Zobrazeno 1 - 10
of 377
pro vyhledávání: '"JONES, JOHN W."'
A database of abstract groups has been added to the L-functions and Modular Forms Database (LMFDB), available at https://www.lmfdb.org/Groups/Abstract/. We discuss the functionality of the database and what makes it distinct from other available data
Externí odkaz:
http://arxiv.org/abs/2409.09189
Autor:
Jones, John W., Roberts, David P.
We study the problem of finding the Artin L-functions with the smallest conductor for a given Galois type. We adapt standard analytic techniques to our novel situation of fixed Galois type and get much improved lower bounds on the smallest conductor.
Externí odkaz:
http://arxiv.org/abs/1610.01228
Autor:
Jones, John W., Roberts, David P.
We present a method for computing complete lists of number fields in cases where the Galois group, as an abstract group, appears as a Galois group in smaller degree. We apply this method to find the twenty-five octic fields with Galois group $\textrm
Externí odkaz:
http://arxiv.org/abs/1602.09119
Autor:
Jones, John W.1 (AUTHOR) Jack.Jones@FifthTheory.Com, Cunningham, Michael R.2 (AUTHOR)
Publikováno v:
Industrial & Organizational Psychology. Sep2023, Vol. 16 Issue 3, p336-340. 5p.
Publikováno v:
In Remote Sensing of Environment April 2020 240
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Jones, John W., Roberts, David P.
Publikováno v:
LMS J. Comput. Math. 17 (2014) 595-618
We describe an online database of number fields which accompanies this paper The database centers on complete lists of number fields with prescribed invariants. Our description here focuses on summarizing tables and connections to theoretical issues
Externí odkaz:
http://arxiv.org/abs/1404.0266
Autor:
Clarke, James, Gamble, John F., Jones, John W., Tobyn, Mike, Greenwood, Richard, Ingram, Andy
Publikováno v:
In Advanced Powder Technology May 2019 30(5):920-929
Autor:
Jones, John W., Roberts, David P.
Publikováno v:
Algebra Number Theory 8 (2014) 609-645
Consider tuples of separable algebras over a common local or global number field, related to each other by specified resolvent constructions. Under the assumption that all ramification is tame, simple group-theoretic calculations give best possible d
Externí odkaz:
http://arxiv.org/abs/1208.5806
Autor:
Jones, John W.
We consider finite extensions of the rationals which are unramified except for at 2 and infinity. We show there are no such extensions of degrees 9 through 15.
Externí odkaz:
http://arxiv.org/abs/math/0605649