Zobrazeno 1 - 10
of 549
pro vyhledávání: '"JOHNSON, C. R."'
Autor:
Furtado, S., Johnson, C. R.
In models using pair-wise (ratio) comparisons among alternatives, a cardinal ranking vector should be deduced from a reciprocal matrix. The right Perron eigenvector (RP) was traditionally used, though several other options have emerged. We consider s
Externí odkaz:
http://arxiv.org/abs/2408.00454
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Costas-Santos, R. S., Johnson, C. R.
We consider spectra of $n$-by-$n$ irreducible tridiagonal matrices over a field and of their $n-1$-by-$n-1$ trailing principal submatrices. The real symmetric and complex Hermitian cases have been fully understood: it is necessary and sufficient that
Externí odkaz:
http://arxiv.org/abs/1807.08877
Autor:
Alder, M. L.1,2 megan.lynn.alder@emory.edu, Johnson, C. R.3, Zauszniewski, J. A.2, Malow, B. A.4, Burant, C. J.2, Scahill, L.1
Publikováno v:
Journal of Autism & Developmental Disorders. Sep2023, Vol. 53 Issue 9, p3670-3682. 13p. 5 Charts.
Autor:
Johnson, C. R., Paparella, Pietro
Publikováno v:
Linear Multilinear Algebra, 65(10):2124-2130, 2017
In further pursuit of the diagonalizable \emph{real nonnegative inverse eigenvalue problem} (RNIEP), we study the relationship between the \emph{row cone} $\mathcal{C}_r(S)$ and the \emph{spectracone} $\mathcal{C}(S)$ of a Perron similarity $S$. In t
Externí odkaz:
http://arxiv.org/abs/1611.02752
Autor:
Sinha, C., Lecavalier, L., Johnson, C. R., Taylor, C., Mulligan, A., Buckley, D., Alder, M. L., Scahill, L.
Publikováno v:
Journal of Autism & Developmental Disorders; May2024, Vol. 54 Issue 5, p1792-1803, 12p
Publikováno v:
Oecologia, 2019 Jul 01. 190(3), 665-677.
Externí odkaz:
https://www.jstor.org/stable/48705796
Publikováno v:
Oecologia, 2018 Dec 01. 188(4), 1239-1251.
Externí odkaz:
https://www.jstor.org/stable/48719100
Autor:
Costas-Santos, R. S., Johnson, C. R.
In this paper we prove that for a general tree $T$, if $A$ is T-TP, all the submatrices of $A$ associated with the deletion of pendant vertices are $P$-matrices, and $\det A>0$, then the smallest eigenvalue has an eigenvector signed according to $T$.
Externí odkaz:
http://arxiv.org/abs/1003.5160