Zobrazeno 1 - 10
of 83
pro vyhledávání: '"JOHN MALLET-PARET"'
Autor:
Roger D. Nussbaum, John Mallet-Paret
Publikováno v:
Journal of Dynamics and Differential Equations.
In 1973 Nussbaum proved that certain bounded solutions of autonomous delay-differential equations with analytic nonlinearities are themselves analytic. On the other hand, the two authors of this paper more recently showed that bounded solutions of ce
Autor:
Roger D. Nussbaum, John Mallet-Paret
Publikováno v:
Journal of Dynamics and Differential Equations. 31:1045-1077
We consider a class of compact positive operators $$L:X\rightarrow X$$ given by $$(Lx)(t)=\int ^t_{\eta (t)}x(s)\,ds$$ , acting on the space X of continuous $$2\pi $$ -periodic functions x. Here $$\eta $$ is continuous with $$\eta (t)\le t$$ and $$\e
Publikováno v:
Infinite Dimensional Dynamical Systems ISBN: 9781461445227
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::90ce7df69b544193be6092b2403072f4
https://doi.org/10.1007/978-1-4614-4523-4_20
https://doi.org/10.1007/978-1-4614-4523-4_20
Autor:
John Mallet-Paret, Roger D. Nussbaum
Publikováno v:
Journal of Dynamics and Differential Equations. 25:843-905
We develop the theory of compound functional differential equations, which are tensor and exterior products of linear functional differential equations. Of particular interest is the equation $\dot x(t)=-\alpha(t)x(t)-\beta(t)x(t-1)$ with a single de
Autor:
Roger D. Nussbaum, John Mallet-Paret
Publikováno v:
Journal of Differential Equations. 250(11):4037-4084
We study the singularly perturbed state-dependent delay-differential equation (⁎) e x ˙ ( t ) = − x ( t ) − k x ( t − r ) , r = r ( x ( t ) ) = 1 + x ( t ) , which is a special case of the equation e x ˙ ( t ) = g ( x ( t ) , x ( t − r )
Autor:
John Mallet-Paret, Roger D. Nussbaum
Publikováno v:
Annali di Matematica Pura ed Applicata. 190:453-488
Two homogeneous measures of noncompactness β and γ on an infinite dimensional Banach space X are called “equivalent” if there exist positive constants b and c such that b β(S) ≤ γ(S) ≤ c β(S) for all bounded sets $${S\subset X}$$ . If su
Autor:
John Mallet-Paret, Shui-Nee Chow
Publikováno v:
Journal of Dynamics and Differential Equations. 22:73-78
Autor:
John Mallet-Paret, Roger D. Nussbaum
Publikováno v:
Journal of Fixed Point Theory and Applications. 7:103-143
If L : Y → Y is a bounded linear map on a Banach space Y, the “radius of the essential spectrum” or “essential spectral radius” ρ(L) of L is well-defined and there are well-known formulas for ρ(L) in terms of measures of noncompactness. N
Autor:
Aaron Hoffman, John Mallet-Paret
Publikováno v:
Journal of Dynamics and Differential Equations. 22:79-119
We study traveling waves for reaction diffusion equations on the spatially discrete domain $\Z^2$. The phenomenon of crystallographic pinning occurs when traveling waves become pinned in certain directions despite moving with non-zero wave speed in n
Autor:
Roger D. Nussbaum, John Mallet-Paret
Publikováno v:
Journal of Fixed Point Theory and Applications. 4:203-245
In Sections 2 and 3 of this paper we refine and generalize theorems of Nussbaum (see [42]) concerning the approximate fixed point index and the fixed point index class. In Section 4 we indicate how these results imply a wide variety of asymptotic fix