Zobrazeno 1 - 10
of 47
pro vyhledávání: '"JIRYO KOMEDA"'
Publikováno v:
Mathematics, Vol 11, Iss 9, p 2164 (2023)
The authors wish to make the following corrections to this paper [...]
Externí odkaz:
https://doaj.org/article/a92a89694ac7428bbaad68fc18e66d2b
Publikováno v:
Mathematics, Vol 10, Iss 16, p 3010 (2022)
The Weierstrass curve X is a smooth algebraic curve determined by the Weierstrass canonical form, yr+A1(x)yr−1+A2(x)yr−2+⋯+Ar−1(x)y+Ar(x)=0, where r is a positive integer, and each Aj is a polynomial in x with a certain degree. It is known th
Externí odkaz:
https://doaj.org/article/3a1aa29abf4049c7a861e80f1da3b577
Autor:
JIRYO KOMEDA, TAKESHI TAKAHASHI
Publikováno v:
Rendiconti del Seminario Matematico della Universita di Padova; 2024, Vol. 152, p21-44, 24p
Autor:
JIRYO KOMEDA, TAKESHI TAKAHASHI
Publikováno v:
Rendiconti del Seminario Matematico della Universita di Padova; 2024, Vol. 152, p1-20, 20p
Autor:
Jiryo Komeda
Publikováno v:
Semigroup Forum. 103:935-952
Let u be any positive integer. We construct infinite sequences of almost symmetric non-Weierstrass numerical semigroups whose conductors are the genera double minus $$2u-1$$ 2 u - 1 . Moreover, let v be any non-negative integer. We give an infinite n
Autor:
Jiryo Komeda, Ryo Kawaguchi
Publikováno v:
Bulletin of the Brazilian Mathematical Society, New Series. 51:107-123
A numerical semigroup H is said to be cyclic if it is the Weierstrass semigroup of a total ramification point of some cyclic covering of the projective line. In this case, the elements of the standard basis of H satisfy numerical conditions that we h
Autor:
Jiryo Komeda, Ryo Kawaguchi
Publikováno v:
Journal of Pure and Applied Algebra. 225:106759
First, we give some Weierstrass semigroups which cannot be attained by any smooth curve on a smooth compact toric surface. Next, for any integer l ≥ 2 we describe the Weierstrass semigroup of a total ramification point of a cyclic covering of the p
Autor:
Jiryo Komeda, Takeshi Takahashi
Publikováno v:
Journal of the Korean Mathematical Society. 54:69-86
Autor:
Makiko Mase, Jiryo Komeda
Publikováno v:
Tsukuba J. Math. 43, no. 1 (2019), 55-69
Let $C$ be a curve on the weighted projective plane $\mathbf{P}(1, 1, 4)$ which is of Fermat type or almost Fermat type. We construct K3 surfaces which are double covers of $\mathbf{P}(1, 1, 4)$ and which contain pointed curves with symmetric Weierst
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9117a25a2cc4af6a90c15bfbaa5fee62
https://projecteuclid.org/euclid.tkbjm/1571968821
https://projecteuclid.org/euclid.tkbjm/1571968821
Publikováno v:
Archiv der Mathematik. 107:499-509
The zero divisor of the theta function of a compact Riemann surface $X$ of genus $g$ is the canonical theta divisor of Pic${}^{(g-1)}$ up to translation by the Riemann constant $\Delta$ for a base point $P$ of $X$. The complement of the Weierstrass g