Zobrazeno 1 - 10
of 354
pro vyhledávání: '"JIN-YI CAI"'
Autor:
Jin-Yi Cai, Xi Chen
Complexity theory aims to understand and classify computational problems, especially decision problems, according to their inherent complexity. This book uses new techniques to expand the theory for use with counting problems. The authors present dic
Autor:
JIN-YI CAI1 jyc@cs.wisc.edu, XI CHEN2 xichen@cs.columbia.edu
Publikováno v:
Journal of the ACM. Jun2017, Vol. 64 Issue 3, p1-39. 39p.
Autor:
Jin-Yi Cai, Ashwin Maran
We prove a complexity dichotomy theorem for counting planar graph homomorphisms of domain size 3. Given any 3 by 3 real valued symmetric matrix $H$ defining a graph homomorphism from all planar graphs $G \mapsto Z_H(G)$, we completely classify the co
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::38665e53fdf7076bc3d5715463d26713
http://arxiv.org/abs/2302.08570
http://arxiv.org/abs/2302.08570
Autor:
Jin-Yi Cai, Artem Govorov
Publikováno v:
Theoretical Computer Science. 889:14-24
We prove #P-completeness results for counting edge colorings on simple graphs. These strengthen the corresponding results on multigraphs from [4] . We prove that for any κ ≥ r ≥ 3 counting κ-edge colorings on r-regular simple graphs is #P-compl
Autor:
Artem Govorov, Jin-Yi Cai
Publikováno v:
ACM Transactions on Computation Theory. 13:1-25
Graph homomorphism has been an important research topic since its introduction [20]. Stated in the language of binary relational structures in that paper [20], Lovász proved a fundamental theorem that, for a graph H given by its 0-1 valued adjacency
Autor:
Zhiguo Fu, Jin-Yi Cai
Publikováno v:
Theory of Computing Systems.
Autor:
Jin-Yi Cai, Tyson Williams
Publikováno v:
Handbook of the Tutte Polynomial and Related Topics ISBN: 9780429161612
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::2bc501551bf13d4f47e50a6f33ea28cb
https://doi.org/10.1201/9780429161612-21
https://doi.org/10.1201/9780429161612-21
Publikováno v:
Theory of Computing Systems. 64:1362-1391
Holant problems are a general framework to study counting problems. Both counting constraint satisfaction problems (#CSP) and graph homomorphisms are special cases. We prove a complexity dichotomy theorem for $\text {Holant}^{*}(\mathcal {F})$ , wher
Publikováno v:
Cai, J-Y, Fu, Z, Guo, H & Williams, T 2022, ' FKT is not universal — A planar Holant dichotomy for symmetric constraints ', Theory of Computing Systems, vol. 66, pp. 143-308 . https://doi.org/10.1007/s00224-021-10032-1
We prove a complexity classification for Holant problems defined by an arbitrary set of complex-valued symmetric constraint functions on Boolean variables. This is to specifically answer the question: Is the Fisher-Kasteleyn-Temperley (FKT) algorithm
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::15a71eeaf76f8b5cc1592cb3ef8d46dc
https://hdl.handle.net/20.500.11820/d57c88d6-c3d7-4626-994e-08fa213e0a60
https://hdl.handle.net/20.500.11820/d57c88d6-c3d7-4626-994e-08fa213e0a60
Autor:
Jin-Yi Cai, Ashwin Maran
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783031221040
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::4251113d59025001925bb13d82acbd3c
https://doi.org/10.1007/978-3-031-22105-7_24
https://doi.org/10.1007/978-3-031-22105-7_24