Zobrazeno 1 - 10
of 51
pro vyhledávání: '"JIANZE LI"'
Publikováno v:
Applied Sciences, Vol 14, Iss 8, p 3284 (2024)
Knowledge distillation based on the features from the penultimate layer allows the student (lightweight model) to efficiently mimic the internal feature outputs of the teacher (high-capacity model). However, the training data may not conform to the g
Externí odkaz:
https://doaj.org/article/78e00af697094a4ab9c5bd2b23445047
Autor:
WENTAO DING1 wentaoding@link.cuhk.edu.cn, JIANZE LI2 lijianze@gmail.com, SHUZHONG ZHANG3 zhangs@umn.edu
Publikováno v:
SIAM Journal on Matrix Analysis & Applications. 2024, Vol. 45 Issue 1, p167-202. 36p.
Autor:
JIANZE LI1 lijianze@gmail.com, USEVICH, KONSTANTIN2 konstantin.usevich@cnrs.fr, COMON, PIERRE3 pierre.comon@gipsa-lab.fr
Publikováno v:
SIAM Journal on Matrix Analysis & Applications. 2023, Vol. 44 Issue 2, p592-621. 30p.
Publikováno v:
2022 IEEE 10th Joint International Information Technology and Artificial Intelligence Conference (ITAIC).
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783031200649
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::8f4885b544598a29a4b478bd94636057
https://doi.org/10.1007/978-3-031-20065-6_11
https://doi.org/10.1007/978-3-031-20065-6_11
Publikováno v:
SIAM Journal on Optimization
SIAM Journal on Optimization, Society for Industrial and Applied Mathematics, 2020, 30 (4), pp.2998-3028. ⟨10.1137/19M125950X⟩
SIAM Journal on Optimization, 2020, 30 (4), pp.2998-3028. ⟨10.1137/19M125950X⟩
SIAM Journal on Optimization, Society for Industrial and Applied Mathematics, 2020, 30 (4), pp.2998-3028. ⟨10.1137/19M125950X⟩
SIAM Journal on Optimization, 2020, 30 (4), pp.2998-3028. ⟨10.1137/19M125950X⟩
International audience; We propose a gradient-based Jacobi algorithm for a class of maximization problems on the unitary group, with a focus on approximate diagonalization of complex matrices and tensors by unitary transformations. We provide weak co
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5255b709c3a4129f61c0de6042a3b8a7
https://hal.archives-ouvertes.fr/hal-01998900v4/document
https://hal.archives-ouvertes.fr/hal-01998900v4/document
Publikováno v:
SAM 2020-11th Sensor Array and Multichannel Signal Processing Workshop, SAM 2020
SAM 2020-11th Sensor Array and Multichannel Signal Processing Workshop, SAM 2020, Jun 2020, Hangzhou (virtual), China. ⟨10.1109/SAM48682.2020.9104331⟩
SAM
SAM 2020-11th Sensor Array and Multichannel Signal Processing Workshop, SAM 2020, Jun 2020, Hangzhou (virtual), China. ⟨10.1109/SAM48682.2020.9104331⟩
SAM
Jacobi-type algorithms for simultaneous approximate diagonalization of real (or complex) symmetric tensors have been widely used in independent component analysis (ICA) because of their good performance. One natural way of choosing the index pairs in
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::70c0fd97da17fea193581e208ed0658f
https://hal.archives-ouvertes.fr/hal-02994725
https://hal.archives-ouvertes.fr/hal-02994725
In this paper, we propose a gradient-based block coordinate descent (BCD-G) framework to solve the joint approximate diagonalization of matrices defined on the product of the complex Stiefel manifold and the special linear group. Instead of the cycli
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::40b882a1af2b822d3b1626412a31eb89
Publikováno v:
SIAM Journal on Matrix Analysis and Applications
SIAM Journal on Matrix Analysis and Applications, Society for Industrial and Applied Mathematics, 2018, 39 (1), pp.1-22. ⟨10.1137/17M1116295⟩
SIAM Journal on Matrix Analysis and Applications, 2018, 39 (1), pp.1-22. ⟨10.1137/17M1116295⟩
SIAM Journal on Matrix Analysis and Applications, Society for Industrial and Applied Mathematics, 2018, 39 (1), pp.1-22. ⟨10.1137/17M1116295⟩
SIAM Journal on Matrix Analysis and Applications, 2018, 39 (1), pp.1-22. ⟨10.1137/17M1116295⟩
In this paper, we consider a family of Jacobi-type algorithms for simultaneous orthogonal diagonalization problem of symmetric tensors. For the Jacobi-based algorithm of [SIAM J. Matrix Anal. Appl., 2(34):651--672, 2013], we prove its global converge
Publikováno v:
INTERSPEECH