Zobrazeno 1 - 10
of 22
pro vyhledávání: '"JIANBING CAO"'
Autor:
Jianbing Cao, Dongwei Shi
Publikováno v:
Linear and Multilinear Algebra. 68:972-982
In this paper, we focus on the Moore–Penrose metric generalized inverse of the modified operator B=A+UGV, where A,U,G,V are bounded linear operators between some Banach spaces. We establish conditi...
Autor:
Yifeng Xue, Jianbing Cao
Publikováno v:
Banach J. Math. Anal. 12, no. 3 (2018), 709-729
In this article, based on some geometric properties of Banach spaces and one feature of the metric projection, we introduce a new class of bounded linear operators satisfying the so-called $(\alpha,\beta)$ -USU (uniformly strong uniqueness) property.
Autor:
Jianbing Cao, Jiefang Liu
Publikováno v:
International Journal of Computer Mathematics. 96:729-752
Let X=Lp(Ω,μ) (1
Autor:
Jianbing Cao, Wanqin Zhang
Publikováno v:
Ann. Funct. Anal. 9, no. 1 (2018), 17-29
Let $X,Y$ be Banach spaces, and let $T$ , $\delta T:X\to Y$ be bounded linear operators. Put $\bar{T}=T+\delta T$ . In this article, utilizing the gap between closed subspaces and the perturbation bounds of metric projections, we first present some e
Autor:
Hongwei Jiao, Jianbing Cao
Publikováno v:
Filomat. 32:6829-6836
In this paper, by using some recent perturbation bounds for the Moore-Penrose metric generalized inverse, we present some results on the perturbation analysis for projecting a point onto a linear manifold in reflexive strictly convex Banach spaces. T
Autor:
Jianbing Cao, Yifeng Xue
Publikováno v:
Numerical Functional Analysis and Optimization. 38:1624-1643
Let X = Lp(Ω,μ) (1
Autor:
Jianbing Cao
Publikováno v:
Applied Mathematics and Physics. 5:95-98
In this paper, we establish the general solution of a 2-variable quadratic functional equation f(2x+y,2z+w)=f(x+y,z+w)-f(x-y,z-w)+4f(x,z)+f(y,w) and prove the generalized Hyers-Ulam stability of this functional equation.
Autor:
Jianbing Cao
Publikováno v:
Advances in Pure Mathematics. :467-471
In the present paper, we shall give an extension of the well known Pecaric-Rajic inequality in a quasi-Banach space, we establish the generalized inequality for an arbitrary number of finitely many nonzero elements of a quasi-Banach space, and obtain
Autor:
Jianbing Cao
Publikováno v:
International Journal of Mathematical Analysis. 11:839-847
Autor:
Jianbing Cao
Publikováno v:
International Mathematical Forum. 12:827-833