Zobrazeno 1 - 10
of 79
pro vyhledávání: '"JANKAUSKAS, JONAS"'
In this work we set up the distribution function of $\mathcal{M}:=\sup_{n\geqslant1}\sum_{i=1}^{n}{(Z_i-1)}$, where the random walk $\sum_{i=1}^{n}Z_i, n\in\mathbb{N},$ is generated by $N$ periodically occurring distributions and the integer-valued a
Externí odkaz:
http://arxiv.org/abs/2207.03196
Let $A$ be a $d \times d$ matrix with rational entries which has no eigenvalue $\lambda \in \mathbb{C}$ of absolute value $|\lambda| < 1$ and let $\mathbb{Z}^d[A]$ be the smallest nontrivial $A$-invariant $\mathbb{Z}$-module. We lay down a theoretica
Externí odkaz:
http://arxiv.org/abs/2107.14168
Autor:
Grigutis, Andrius, Jankauskas, Jonas
We analyze $2\times 2$ Hankel-like determinants $D_n$ that arise in the initial values problem for the ultimate time survival probability $\varphi(u)$ in a homogeneous discrete time risk model $W(n)=u+\kappa n+\sum_{i=1}^nZ_i$, where $Z_i$ are positi
Externí odkaz:
http://arxiv.org/abs/2102.06987
Autor:
Hare, Kevin G., Jankauskas, Jonas
We study $\{0, 1\}$ and $\{-1, 1\}$ polynomials $f(z)$, called Newman and Littlewood polynomials, that have a prescribed number $N(f)$ of zeros in the open unit disk $\mathcal{D} = \{z \in \mathbb{C}: |z| < 1\}$. For every pair $(k, n) \in \mathbb{N}
Externí odkaz:
http://arxiv.org/abs/1910.13994
Autor:
Dubickas, Artūras, Jankauskas, Jonas
In this paper we consider linear relations with conjugates of a Salem number $\alpha$. We show that every such a relation arises from a linear relation between conjugates of the corresponding totally real algebraic integer $\alpha+1/\alpha$. It is al
Externí odkaz:
http://arxiv.org/abs/1905.04023
Autor:
Jankauskas, Jonas, Thuswaldner, Jörg
Let $A$ be an $n \times n$ matrix with rational entries and let \[ \mathbb{Z}^n[A] := \bigcup_{k=1}^{\infty} \left( \mathbb{Z}^n + A\mathbb{Z}^n + \dots + A^{k-1}\mathbb{Z}^n\right) \] be the minimal $A$-invariant $\mathbb{Z}$-module containing the l
Externí odkaz:
http://arxiv.org/abs/1801.01839
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
DUBICKAS, Artūras, JANKAUSKAS, Jonas
Publikováno v:
Journal de Théorie des Nombres de Bordeaux, 2020 Jan 01. 32(1), 179-191.
Externí odkaz:
https://www.jstor.org/stable/26939657
A Newman polynomial has all the coefficients in $\{ 0,1\}$ and constant term 1, whereas a Littlewood polynomial has all coefficients in $\{-1,1\}$. We call $P(X)\in\mathbb{Z}[X]$ a Borwein polynomial if all its coefficients belong to $\{ -1,0,1\}$ an
Externí odkaz:
http://arxiv.org/abs/1609.07295
Autor:
Jankauskas, Jonas
Jono Jankausko disertacijos "Polinomų aukščiai" matematikos Disertacijoje yra sprendžiami matematiniai uždaviniai susiję su polinomų (algebrinių daugianarių) aukščiais. Nagrinėjami vieno kintamojo polinomai su realiais ir kompleksiniais k
Externí odkaz:
http://vddb.laba.lt/fedora/get/LT-eLABa-0001:E.02~2012~D_20121017_111744-18129/DS.005.0.01.ETD