Zobrazeno 1 - 10
of 63
pro vyhledávání: '"J. Wouda"'
Autor:
Xinyu Song, Shirdi Shankara Van De Ven, Lanlan Liu, Frank J. Wouda, Hong Wang, Peter B. Shull
Publikováno v:
IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol 30, Pp 621-631 (2022)
Most stroke survivors have difficulties completing activities of daily living (ADLs) independently. However, few rehabilitation systems have focused on ADLs-related training for gross and fine motor function together. We propose an ADLs-based serious
Externí odkaz:
https://doaj.org/article/ed783e19fb03477ea8e394d65799e940
Autor:
Frank J. Wouda, Stephan L. J. O. Jaspar, Jaap Harlaar, Bert-Jan F. van Beijnum, Peter H. Veltink
Publikováno v:
Journal of NeuroEngineering and Rehabilitation, Vol 18, Iss 1, Pp 1-10 (2021)
Abstract Background The foot progression angle is an important measure used to help patients reduce their knee adduction moment. Current measurement systems are either lab-bounded or do not function in all environments (e.g., magnetically distorted).
Externí odkaz:
https://doaj.org/article/be414aab729d46b38bf73e6a4375e0cd
Autor:
Frank J. Wouda, Matteo Giuberti, Giovanni Bellusci, Erik Maartens, Jasper Reenalda, Bert-Jan F. van Beijnum, Peter H. Veltink
Publikováno v:
Frontiers in Physiology, Vol 9 (2018)
Analysis of running mechanics has traditionally been limited to a gait laboratory using either force plates or an instrumented treadmill in combination with a full-body optical motion capture system. With the introduction of inertial motion capture s
Externí odkaz:
https://doaj.org/article/5b5be35b315645c6ac1cca875abc9b72
Autor:
Geert Kazemier, Ernest J Wouda, Merijn E de Swart, Esther Sanchez Aliaga, David P. Noske, Maaike Schuur, B. Moraal, Babette I. Kuiper, Philip C. De Witt Hamer, Tjeerd J. Postma, William P. Vandertop, Mathilde C.M. Kouwenhoven, Niels K Maliepaard, B.M. Zonderhuis, Bernard M. J. Uitdehaag, Tessa Hellingman, Cathelijne Gorter de Vries, Machteld Leembruggen-Vellinga
Publikováno v:
de Swart, M E, Kouwenhoven, M C M, Hellingman, T, Kuiper, B I, Gorter de Vries, C, Leembruggen-Vellinga, M, Maliepaard, N K, Wouda, E J, Moraal, B, Noske, D P, Postma, T J, Sanchez Aliaga, E, Uitdehaag, B M J, Vandertop, W P, Zonderhuis, B M, Kazemier, G, de Witt Hamer, P C & Schuur, M 2021, ' A multidisciplinary neuro-oncological triage panel reduces the time to referral and treatment for patients with a brain tumor ', Neuro-Oncology Practice, vol. 8, no. 5, pp. 559-568 . https://doi.org/10.1093/nop/npab040
Neuro-oncology practice, 8(5), 559-568. Oxford University Press
Neuro-Oncology Practice, 8(5), 559-568. Oxford University Press
Neuro-Oncology Practice
Neuro-oncology practice, 8(5), 559-568. Oxford University Press
Neuro-Oncology Practice, 8(5), 559-568. Oxford University Press
Neuro-Oncology Practice
BackgroundRegional collaboration and appropriate referral management are crucial in neuro-oncological care. Lack of electronic access to medical records across health care organizations impedes interhospital consultation and may lead to incomplete an
Autor:
Frank J. Wouda, Matteo Giuberti, Nina Rudigkeit, Bert-Jan F. van Beijnum, Mannes Poel, Peter H. Veltink
Publikováno v:
Sensors, Vol 19, Iss 17, p 3716 (2019)
Full-body motion capture typically requires sensors/markers to be placed on each rigid body segment, which results in long setup times and is obtrusive. The number of sensors/markers can be reduced using deep learning or offline methods. However, thi
Externí odkaz:
https://doaj.org/article/913043852c8a43a3af6a75e8e275d952
Publikováno v:
Sensors, Vol 16, Iss 12, p 2138 (2016)
Human movement analysis has become easier with the wide availability of motion capture systems. Inertial sensing has made it possible to capture human motion without external infrastructure, therefore allowing measurements in any environment. As high
Externí odkaz:
https://doaj.org/article/319a283941bb4fd89c3d4960c4676a43
Autor:
Jaap Harlaar, Stephan L. J. O. Jaspar, Peter H. Veltink, Bert-Jan van Beijnum, Frank J. Wouda
Publikováno v:
Journal of NeuroEngineering and Rehabilitation, Vol 18, Iss 1, Pp 1-10 (2021)
Journal of NeuroEngineering and Rehabilitation
Wouda, F J, Jaspar, S L J O, Harlaar, J, van Beijnum, B-J F & Veltink, P H 2021, ' Foot progression angle estimation using a single foot-worn inertial sensor ', Journal of NeuroEngineering and Rehabilitation, vol. 18, no. 1, 37 . https://doi.org/10.1186/s12984-021-00816-4
Journal of NeuroEngineering and Rehabilitation, 18(1)
Journal of neuroengineering and rehabilitation, 18(1):37. BioMed Central
Journal of NeuroEngineering and Rehabilitation, 18(1):37. BioMed Central
Journal of NeuroEngineering and Rehabilitation
Wouda, F J, Jaspar, S L J O, Harlaar, J, van Beijnum, B-J F & Veltink, P H 2021, ' Foot progression angle estimation using a single foot-worn inertial sensor ', Journal of NeuroEngineering and Rehabilitation, vol. 18, no. 1, 37 . https://doi.org/10.1186/s12984-021-00816-4
Journal of NeuroEngineering and Rehabilitation, 18(1)
Journal of neuroengineering and rehabilitation, 18(1):37. BioMed Central
Journal of NeuroEngineering and Rehabilitation, 18(1):37. BioMed Central
Background The foot progression angle is an important measure used to help patients reduce their knee adduction moment. Current measurement systems are either lab-bounded or do not function in all environments (e.g., magnetically distorted). This wor
Autor:
Frank J. Wouda
Human motion capture is important for a wide variety of applications, e.g., biomechanical analysis, virtual reality and character animation. Current human motion capture solutions require a large number of markers/sensors to be placed on the body. In
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6feae3f637cdfc4323477d52a6a431fa
https://doi.org/10.3990/1.9789036549233
https://doi.org/10.3990/1.9789036549233
Publikováno v:
AAAI-19/IAAI-19/EAAI-19 Proceedings, 10063-10064
STARTPAGE=10063;ENDPAGE=10064;TITLE=AAAI-19/IAAI-19/EAAI-19 Proceedings
AAAI
STARTPAGE=10063;ENDPAGE=10064;TITLE=AAAI-19/IAAI-19/EAAI-19 Proceedings
AAAI
Previous research has shown that estimating full-body poses from a minimal sensor set using a trained ANN without explicitly enforcing time coherence has resulted in output pose sequences that occasionally show undesired jitter. To mitigate such effe
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9e905587c7e3d6e9b8f7ca5d73055cd0
https://research.utwente.nl/en/publications/85e9b732-e5c2-4344-9265-1bda7afc95b3
https://research.utwente.nl/en/publications/85e9b732-e5c2-4344-9265-1bda7afc95b3
Autor:
Matteo Giuberti, Nina Rudigkeit, Peter H. Veltink, Bert-Jan van Beijnum, Mannes Poel, Frank J. Wouda
Publikováno v:
Sensors (Basel, Switzerland)
Sensors, Vol 19, Iss 17, p 3716 (2019)
Sensors (Switzerland), 19:3716. MDPI
Sensors
Volume 19
Issue 17
Sensors, Vol 19, Iss 17, p 3716 (2019)
Sensors (Switzerland), 19:3716. MDPI
Sensors
Volume 19
Issue 17
Full-body motion capture typically requires sensors/markers to be placed on each rigid body segment, which results in long setup times and is obtrusive. The number of sensors/markers can be reduced using deep learning or offline methods. However, thi