Zobrazeno 1 - 10
of 52
pro vyhledávání: '"J. Van Fleet"'
Autor:
Patrick J. Van Fleet, David K. Ruch
Publikováno v:
Axioms, Vol 2, Iss 3, Pp 371-389 (2013)
In this paper, we outline a method for constructing nonnegative scaling vectors on the interval. Scaling vectors for the interval have been constructed in [1–3]. The approach here is different in that the we start with an existing scaling vector ϕ
Externí odkaz:
https://doaj.org/article/2b2f82ed5136478dbb8536e2f210391d
Autor:
Patrick J. Van Fleet
Publikováno v:
Discrete Wavelet Transformations ISBN: 9781119555414
Discrete Wavelet Transformations: An Elementary Approach with Applications
Discrete Wavelet Transformations: An Elementary Approach with Applications
This chapter presents a basic overview of wavelet shrinkage and its application to signal denoising. It discusses two wavelet‐based methods used to denoise signals: the VisuShrink method and the SureShrink method. VisuShrink utilizes the wavelet sh
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::3b1512ac004a5a8be37bf85e371de05a
https://doi.org/10.1002/9781119555414.ch6
https://doi.org/10.1002/9781119555414.ch6
Autor:
Patrick J. Van Fleet
Publikováno v:
Discrete Wavelet Transformations ISBN: 9781119555414
Discrete Wavelet Transformations: An Elementary Approach with Applications
Discrete Wavelet Transformations: An Elementary Approach with Applications
One of the main application areas of wavelet transforms is image processing. Wavelet transforms can be used in processes designed to compress images, search for edges in images, or enhance image features. This chapter presents the basics of digital i
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::034a9d57c05269e6b5ccf864efa4f19e
https://doi.org/10.1002/9781119555414.ch3
https://doi.org/10.1002/9781119555414.ch3
Autor:
Patrick J. Van Fleet
Publikováno v:
Discrete Wavelet Transformations ISBN: 9781119555414
This chapter explains the problem of finding filters (filter pairs) in the Fourier domain. It characterizes the Daubechies system in terms of Fourier series. The chapter utilizes the Fourier series to identify other desirable conditions satisfied by
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::7d98db89e5ae44c19922b3828b3077a6
https://doi.org/10.1002/9781119555414.ch9
https://doi.org/10.1002/9781119555414.ch9
Autor:
Patrick J. Van Fleet
Publikováno v:
Discrete Wavelet Transformations ISBN: 9781119555414
This chapter explains how to construct a biorthogonal filter pair that can be used to generate wavelet transformation matrices. It also explains how to construct short biorthogonal filter pairs. The chapter then develops techniques utilizing symmetri
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::0f570a85866732332c18fac4faeec6d8
https://doi.org/10.1002/9781119555414.ch7
https://doi.org/10.1002/9781119555414.ch7
Autor:
Patrick J. Van Fleet
Updated and Expanded Textbook Offers Accessible and Applications-First Introduction to Wavelet Theory for Students and Professionals The new edition of Discrete Wavelet Transformations continues to guide readers through the abstract concepts of wavel
Autor:
Peter Massopust, Patrick J. Van Fleet
Publikováno v:
Rocky Mountain J. Math. 47, no. 5 (2017), 1655-1691
We introduce an extension of cone splines and box splines to fractional and complex orders. These new families of multivariate splines are defined in the Fourier domain along certain $s$-directional meshes and include as special cases the $3$-directi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0f5ceeef256386f3995d9c0f96c385b7
https://projecteuclid.org/euclid.rmjm/1506045627
https://projecteuclid.org/euclid.rmjm/1506045627
Autor:
David K. Ruch, Patrick J. Van Fleet
Publikováno v:
Axioms, Vol 2, Iss 3, Pp 371-389 (2013)
Axioms
Volume 2
Issue 3
Pages 371-389
Axioms
Volume 2
Issue 3
Pages 371-389
In this paper, we outline a method for constructing nonnegative scaling vectors on the interval. Scaling vectors for the interval have been constructed in [1–3]. The approach here is different in that the we start with an existing scaling vector ϕ
Autor:
Patrick J. Van Fleet, David K. Ruch
Publikováno v:
Journal of Mathematical Analysis and Applications. 304(1):370-382
This paper considers Gibbs' phenomenon for scaling vectors in L 2 ( R ) . We first show that a wide class of multiresolution analyses suffer from Gibbs' phenomenon. To deal with this problem, in [Contemp. Math. 216 (1998) 63–79], Walter and Shen us
Autor:
Patrick J. Van Fleet
Publikováno v:
Analysis in Theory and Applications. 20:297-306
A degree elevation formula for multivariate simplex splines was given by Micchelli[6] and extended to hold for multivariate Dirichlet splines in [8]. We report similar formulae for multivariate cone splines and box splines. To this end, we utilize a