Zobrazeno 1 - 10
of 10
pro vyhledávání: '"J. Steffen Müller"'
Autor:
J. Steffen Müller, Berno Reitsma
Publikováno v:
Research in Number Theory, 9(2):23. Springer Nature
We introduce an algorithm to compute the structure of the rational torsion subgroup of the Jacobian of a hyperelliptic curve of genus 3 over the rationals. We apply a implementation of our algorithm to a database of curves with low discriminant due t
Autor:
Vishal Arul, J. Steffen Müller
Publikováno v:
Expositiones Mathematicae.
Publikováno v:
Annals of mathematics, 189(3), 885-944
We extend the explicit quadratic Chabauty methods developed in previous work by the first two authors to the case of non-hyperelliptic curves. This results in a method to compute a finite set of p-adic points, containing the rational points, on a cur
Publikováno v:
Israel journal of mathematics, 243
We generalize the explicit quadratic Chabauty techniques for integral points on odd degree hyperelliptic curves and for rational points on genus 2 bielliptic curves to arbitrary number fields using restriction of scalars. This is achieved by combinin
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9149c8a861d99c2bacbcb05779181715
https://research.rug.nl/en/publications/0c153a3e-09c3-4625-8fff-690669009daf
https://research.rug.nl/en/publications/0c153a3e-09c3-4625-8fff-690669009daf
Autor:
Christian Curilla, J. Steffen Müller
Publikováno v:
Kyoto Journal of Mathematics, 60(1), 219-268. Duke University Press
Kyoto J. Math. 60, no. 1 (2020), 219-268
Kyoto J. Math. 60, no. 1 (2020), 219-268
We construct the minimal regular model of the Fermat curve of odd squarefree composite exponent $N$ over the $N$-th cyclotomic integers. As an application, we compute upper and lower bounds for the arithmetic self-intersection of the dualizing sheaf
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::49321414cc15fbcb9c97fa6a2de98565
https://research.rug.nl/en/publications/99101ad0-3820-4a3c-bc91-af5b198dc8b3
https://research.rug.nl/en/publications/99101ad0-3820-4a3c-bc91-af5b198dc8b3
Autor:
J. Steffen Müller, Michael Stoll
We introduce an algorithm that can be used to compute the canonical height of a point on an elliptic curve over the rationals in quasi-linear time. As in most previous algorithms, we decompose the difference between the canonical and the naive height
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::fa1acaefcef7096f68e68819af4103a8
http://arxiv.org/abs/1509.08748
http://arxiv.org/abs/1509.08748
Autor:
Robin de Jong, J. Steffen Müller
Publikováno v:
Mathematical Proceedings of the Cambridge Philosophical Society, 157(2), 357-373
We discuss a new method to compute the canonical height of an algebraic point on a hyperelliptic jacobian over a number field. The method does not require any geometrical models, neither $p$-adic nor complex analytic ones. In the case of genus 2 we a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b0e5b4c3247c1adbc06532e2145d6635
http://hdl.handle.net/1887/44011
http://hdl.handle.net/1887/44011
Autor:
J. Steffen Müller
We explicitly construct the Kummer variety associated to the Jacobian of a hyperelliptic curve of genus 3 that is defined over a field of characteristic not equal to 2 and has a Weierstra{\ss} point defined over the same field. We also construct homo
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::672551bba821cd71f5d9c084ef149156
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.