Zobrazeno 1 - 10
of 127
pro vyhledávání: '"J. Schoissengeier"'
Autor:
J. Schoissengeier
Publikováno v:
Acta Arithmetica. 133:127-157
Autor:
J. Schoißengeier, L. Roçadas
Publikováno v:
Computing. 77:113-128
Assume that α is an irrational number with continued fraction expansion [a0;a1, . . .] and convergents **,n= 0, 1 . . . . Every positive integer N has a unique expansion N=b0q0+b1q1+ . . . +bmqm, where the digits bi are nonnegative integers with b0
Autor:
J. Schoissengeier
Publikováno v:
Monatshefte f�r Mathematik. 144:85-88
Autor:
J. Schoissengeier
Publikováno v:
Monatshefte f�r Mathematik. 129:147-151
Let x be a real number, α an irrational number with continued fraction expansion \(\) and convergents \(\) a positive integer, \(\) be chosen such that \(\) the fractional part of x and \(\) J. Beck [1] proved that \(\) We give a shorter proof, ther
Autor:
P. Schmitt, H. Mitsch, P. Telec, H. G. Feichtinger, J. Schoissengeier, A. Neumaier, G. Kowol, M. Neuwirther, P. Michor, H. Rindler, R. B�rger, H. Muthsam
Publikováno v:
Monatshefte f�r Mathematik. 125:351-356
Autor:
H. Rindler, K. Sigmund, A. Cap, G. Kowol, K. Schmitt, K. Auinger, H. Mitsch, P. Telec, C. Krattenthaler, Ch. Baxa, J. Schoissengeier, K. Schmidt, H. Muthsam, F. Hofbauer, F. Haslinger, G. H�rmann, M. Hoffmann-Ostenhof, H. G. Feichtinger, W. Huyer, Ch. Cenker, R. B�rger, P. Michor
Publikováno v:
Monatshefte f�r Mathematik. 126:369-392
Autor:
J. Schoissengeier
Publikováno v:
Glasgow Mathematical Journal. 40:393-425
In the following let Ω be the set of irrational numbers in the interval [0,1] and let λ be Lebesgue measure restricted to Ω. For any real number x, let {x} = x - [x] be the fractional part of x. Let N be anatural number and let α e Ω. Thenis kno
Autor:
G. Kowol, J. Schoissengeier, H. Mitsch, C. Baxa, M. Koth, H. Rindler, H. Muthsam, T. Hudetz, H. Schichl
Publikováno v:
Monatshefte f�r Mathematik. 125:173-178
Autor:
J. Schoissengeier, Christoph Baxa
Publikováno v:
Journal of the London Mathematical Society. 57:529-544
The first person to consider the discrepancy of sequences of the type (αnσ)n≥1 (where 0 0 and α2∈Q. Both limN→∞¯ N‐1/2ω+(α) and limN→∞¯ N‐1/2ω‐(α) are expressed as maxima of finitely many numbers which involve class numbers
Autor:
J. Grassberger, P. Michor, A. Kriegl, A. Cap, J. Schoissengeier, H. Schichl, F. Haslinger, C. Cenker, K. Sigmund, H. Muthsam, P. Schmitt, R. B�rger
Publikováno v:
Monatshefte f�r Mathematik. 125:83-88