Zobrazeno 1 - 4
of 4
pro vyhledávání: '"J. R. Mecikalski"'
Publikováno v:
Natural Hazards and Earth System Sciences, Vol 22, Pp 577-597 (2022)
In order to aid feature selection in thunderstorm nowcasting, we present an analysis of the utility of various sources of data for machine-learning-based nowcasting of hazards related to thunderstorms. We considered ground-based radar data, satellite
Externí odkaz:
https://doaj.org/article/8a22237793134526b324468f18be0179
Publikováno v:
Hydrology and Earth System Sciences, Vol 22, Pp 4935-4957 (2018)
The principle of maximum entropy (POME) can be used to develop vertical soil moisture (SM) profiles. The minimal inputs required by the POME model make it an excellent choice for remote sensing applications. Two of the major input requirements of
Externí odkaz:
https://doaj.org/article/cd24928d663847d3b343c88c7e9fc82d
Autor:
M. C. Anderson, W. P. Kustas, J. M. Norman, C. R. Hain, J. R. Mecikalski, L. Schultz, M. P. González-Dugo, C. Cammalleri, G. d'Urso, A. Pimstein, F. Gao
Publikováno v:
Hydrology and Earth System Sciences, Vol 15, Iss 1, Pp 223-239 (2011)
Thermal infrared (TIR) remote sensing of land-surface temperature (LST) provides valuable information about the sub-surface moisture status required for estimating evapotranspiration (ET) and detecting the onset and severity of drought. While empiric
Externí odkaz:
https://doaj.org/article/c432f87b30b5401ba36067570f7ddcba
Autor:
J. R. Mecikalski, G. J. Tripoli
Publikováno v:
Quarterly Journal of the Royal Meteorological Society. 129:1537-1563
This study verifies the apparent high positive correlation between environmental and convection-relative inertial stability, and the transport of momentum by deep convection. We evaluate the hypothesis that convection structurally aligns itself to be