Zobrazeno 1 - 10
of 88
pro vyhledávání: '"J. R. Chazottes"'
Publikováno v:
Ergodic Theory and Dynamical Systems. :1-27
Let $(X_k)_{k\geq 0}$ be a stationary and ergodic process with joint distribution $\mu $ , where the random variables $X_k$ take values in a finite set $\mathcal {A}$ . Let $R_n$ be the first time this process repeats its first n symbols of output. I
We consider spin-flip dynamics of configurations in $\{-1,1\}^{\mathbb{Z}^d}$, and study the time evolution of concentration inequalities. For "weakly interacting" dynamics we show that the Gaussian concentration bound is conserved in the course of t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::62dd9f04ea48e6bb46f6b4b0f553e879
Publikováno v:
Journal de l'École polytechnique — Mathématiques
Journal de l'École polytechnique — Mathématiques, École polytechnique, 2020
Journal de l'École polytechnique — Mathématiques, École polytechnique, 2020
We study a class of multi-species birth-and-death processes going almost surely to extinction and admitting a unique quasi-stationary distribution (qsd for short). When rescaled by K and in the limit K ! +1,the realizations of such processes get clos
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e4043b74f76675f57e1bc91a8d197c0d
https://hal.archives-ouvertes.fr/hal-02167101
https://hal.archives-ouvertes.fr/hal-02167101
Publikováno v:
Journal of Statistical Physics
Journal of Statistical Physics, Springer Verlag, 2020, 181, ⟨10.1007/s10955-020-02658-1⟩
Journal of Statistical Physics, 181(6)
Journal of Statistical Physics, Springer Verlag, In press, ⟨10.1007/s10955-020-02658-1⟩
Journal of Statistical Physics, Springer Verlag, 2020, 181, ⟨10.1007/s10955-020-02658-1⟩
Journal of Statistical Physics, 181(6)
Journal of Statistical Physics, Springer Verlag, In press, ⟨10.1007/s10955-020-02658-1⟩
We consider equilibrium states (that is, shift-invariant Gibbs measures) on the configuration space $S^{\mathbb{Z}^d}$ where $d\geq 1$ and $S$ is a finite set. We prove that if an equilibrium state for a shift-invariant uniformly summable potential s
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0e1b46cfe44dda8b99178dab429de6d4
Publikováno v:
Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques
Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, Institut Henri Poincaré (IHP), 2019
Ann. Inst. H. Poincaré Probab. Statist. 55, no. 4 (2019), 2249-2294
Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, Institut Henri Poincaré (IHP), 2019
Ann. Inst. H. Poincaré Probab. Statist. 55, no. 4 (2019), 2249-2294
We consider a class of birth-and-death processes describing a population made of $d$ sub-populations of different types which interact with one another. The state space is $\mathbb{Z}^d_+$ (unbounded). We assume that the population goes almost surely
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0b0bd0cfe69e9674d9f39dc69dc88c93
https://hal.archives-ouvertes.fr/hal-02357308/file/dpg-final-version-6decembre2018_with_french-abstract.pdf
https://hal.archives-ouvertes.fr/hal-02357308/file/dpg-final-version-6decembre2018_with_french-abstract.pdf
We consider the full shift $T:\Omega\to\Omega$ where $\Omega=A^{\mathbb N}$, $A$ being a finite alphabet. For a class of potentials which contains in particular potentials $\phi$ with variation decreasing like $O(n^{-\alpha})$ for some $\alpha>2$, we
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8bdffe8353afce2f19be83fe62ca691e
https://hal.archives-ouvertes.fr/hal-02292419
https://hal.archives-ouvertes.fr/hal-02292419
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
ESM provides mathematical details about Renewal Theory and computational details about the different models presented in the main text.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::089c57c3e0b461ea467a4d8f05cdff93
Publikováno v:
Probability Theory and Related Fields. 164:285-332
We study a general class of birth-and-death processes with state space $\mathbb{N}$ that describes the size of a population going to extinction with probability one. This class contains the logistic case. The scale of the population is measured in te