Zobrazeno 1 - 10
of 1 571
pro vyhledávání: '"J. N. Kutz"'
Publikováno v:
Geoscientific Model Development, Vol 12, Pp 1525-1539 (2019)
We introduce a new set of algorithmic tools capable of producing scalable, low-rank decompositions of global spatiotemporal atmospheric chemistry data. By exploiting emerging randomized linear algebra algorithms, a suite of decompositions are propose
Externí odkaz:
https://doaj.org/article/bc310abcc94b41368a45065bd57bdd31
Publikováno v:
New Journal of Physics, Vol 23, Iss 3, p 033035 (2021)
Data-driven methods for establishing quantum optimal control (QOC) using time-dependent control pulses tailored to specific quantum dynamical systems and desired control objectives are critical for many emerging quantum technologies. We develop a dat
Externí odkaz:
https://doaj.org/article/84ae3ba6ed774465ac7a0e92da1dfdb1
Publikováno v:
Journal of Geophysical Research: Solid Earth. 127
Autor:
Thomas D. Rea, Diya Sashidhar, Jason Coult, Peter J. Kudenchuk, Jennifer Blackwood, Shiv Bhandari, Heemun Kwok, J. N Kutz
Publikováno v:
Circulation. 142
Background: Current resuscitation protocols require pausing cardiopulmonary resuscitation (CPR) to check for a pulse. However, pausing CPR during a pulseless rhythm worsens patient outcome. We designed an ECG-based algorithm that predicts pulse statu
Data-driven methods for establishing quantum optimal control (QOC) using time-dependent control pulses tailored to specific quantum dynamical systems and desired control objectives are critical for many emerging quantum technologies. We develop a dat
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::77438a357f2f4659f9579a034cf68f78
http://arxiv.org/abs/2010.14577
http://arxiv.org/abs/2010.14577
Autor:
David J. Caldwell, J. N. Kutz, Andrew L. Ko, Bingni W. Brunton, Jeffrey G. Ojemann, Jeneva A. Cronin, Kelly L. Collins, Rajesh P. N. Rao, Kurt E. Weaver
Publikováno v:
Journal of neural engineering
Objective. Electrical stimulation of the human brain is commonly used for eliciting and inhibiting neural activity for clinical diagnostics, modifying abnormal neural circuit function for therapeutics, and interrogating cortical connectivity. However
Publikováno v:
Proceedings. Mathematical, Physical, and Engineering Sciences
Hybrid systems are traditionally difficult to identify and analyze using classical dynamical systems theory. Moreover, recently developed model identification methodologies largely focus on identifying a single set of governing equations solely from
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7f8042d8a1dee712e2f79059995886a2
http://arxiv.org/abs/1808.03251
http://arxiv.org/abs/1808.03251
Publikováno v:
SIAM Journal on Applied Mathematics. 76:2099-2122
Choosing a limited set of sensor locations to characterize or classify a high-dimensional system is an important challenge in engineering design. Traditionally, optimizing the sensor locations involves a brute-force, combinatorial search, which is NP
Publikováno v:
ICCV Workshops
The Dynamic Mode Decomposition (DMD) is a spatiotemporal matrix decomposition method capable of background modeling in video streams. DMD is a regression technique that integrates Fourier transforms and singular value decomposition. Innovations in co
Publikováno v:
The European Physical Journal Special Topics. 223:2665-2684
Complex systems exhibit dynamics that typically evolve on low-dimensional attractors and may have sparse representation in some optimal basis. Recently developed compressive sensing techniques exploit this sparsity for state reconstruction and/or cat