Zobrazeno 1 - 8
of 8
pro vyhledávání: '"J. M. Frame"'
Autor:
G. S. Nearing, D. Klotz, J. M. Frame, M. Gauch, O. Gilon, F. Kratzert, A. K. Sampson, G. Shalev, S. Nevo
Publikováno v:
Hydrology and Earth System Sciences, Vol 26, Pp 5493-5513 (2022)
Ingesting near-real-time observation data is a critical component of many operational hydrological forecasting systems. In this paper, we compare two strategies for ingesting near-real-time streamflow observations into long short-term memory (LSTM) r
Externí odkaz:
https://doaj.org/article/b85f88847fe5433c93431e7f7cad3a51
Autor:
J. M. Frame, F. Kratzert, D. Klotz, M. Gauch, G. Shelev, O. Gilon, L. M. Qualls, H. V. Gupta, G. S. Nearing
Publikováno v:
Hydrology and Earth System Sciences, Vol 26, Pp 3377-3392 (2022)
The most accurate rainfall–runoff predictions are currently based on deep learning. There is a concern among hydrologists that the predictive accuracy of data-driven models based on deep learning may not be reliable in extrapolation or for predicti
Externí odkaz:
https://doaj.org/article/1ef8b1f9cdd0413c9f0aea6a8ad269f1
Publikováno v:
JAWRA Journal of the American Water Resources Association. 57:885-905
We build three Long Short-Term Memory (LSTM) daily streamflow prediction models (deep learning networks) for 531 basins across the contiguous United States (CONUS), and compare their performance: (1) a LSTM post-processor trained on the U.S. National
Publikováno v:
Österreichische Wasser- und Abfallwirtschaft. 73:295-307
ZusammenfassungDie Verdunstung ist ein entscheidender Prozess im globalen Wasser‑, Energie- sowie Kohlenstoffkreislauf. Daten zur räumlich-zeitlichen Dynamik der Verdunstung sind daher von großer Bedeutung für Klimamodellierungen, zur Abschätzu
Autor:
J. M. Frame, Martin Gauch, Alden Keefe Sampson, Guy Shalev, Daniel Klotz, Sella Nevo, Frederik Kratzert, Grey Nearing
Ingesting near-real-time observation data is a critical component of many operational hydrological forecasting systems. In this paper we compare two strategies for ingesting near-real-time streamflow observations into Long Short-Term Memory (LSTM) ra
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2637c6e7320fbad8e11d43aa06efc326
https://hess.copernicus.org/preprints/hess-2021-515/
https://hess.copernicus.org/preprints/hess-2021-515/
Autor:
Martin Gauch, Grey Nearing, Daniel Klotz, Frederik Kratzert, Oren Gilon, Logan M. Qualls, Hoshin V. Gupta, Guy Shelev, J. M. Frame
The most accurate rainfall-runoff predictions are currently based on deep learning. There is a concern among hydrologists that data-driven models based on deep learning may not be reliable in extrapolation or for predicting extreme events. This study
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8a96e5356f057cd9c5f88bed7519ec05
https://doi.org/10.5194/hess-2021-423
https://doi.org/10.5194/hess-2021-423
Publikováno v:
Methods in cell biology. 138
Hematopoietic stem cells (HSCs) reside at the apex of the hematopoietic hierarchy, giving rise to each of the blood lineages found throughout the lifetime of the organism. Since the genetic programs regulating HSC development are highly conserved bet
Publikováno v:
IEEE Transactions on Nuclear Science. 12:917-921
A 9 foot radius, 135 degree, double focusing magnet, having a second order energy resolution less than 2 × 10-4 for 1 mm slits, is the principal element in the NRL Cyclotron Ion Optics System. A 21.5 inch wide pole face and 4.75 inch gap provide rad