Zobrazeno 1 - 10
of 76
pro vyhledávání: '"J. L. Selfridge"'
Publikováno v:
Discrete Mathematics. 200:137-147
We form squares from the product of integers in a short interval [ n , n + t n ], where we include n in the product. If p is prime, p | n , and ( 2 p ) > n , we prove that p is the minimum t n . If no such prime exists, we prove t n ⩽ √5 n when n
Publikováno v:
The American Mathematical Monthly. 106:43-48
Publikováno v:
The American Mathematical Monthly. 105:529-543
(1998). 3-Smooth Representations of Integers. The American Mathematical Monthly: Vol. 105, No. 6, pp. 529-543.
Publikováno v:
Mathematics of Computation. 61:215-224
We estimate the least prime factor p of the binomial coefficient ( k N ) \left ( {_k^N} \right ) for k ≥ 2 k \geq 2 . The conjecture that p ≤ max ( N / k , 29 ) p \leq \max (N/k,29) is supported by considerable numerical evidence. Call a binomial
Autor:
J. L. Selfridge, John M. Howie
Publikováno v:
Mathematical Proceedings of the Cambridge Philosophical Society. 109:277-286
For unexplained terms in semigroup theory see [1] or [4].Let C, D be classes of semigroups such that every finite semigroup in the class C is embeddable in a finite semigroup in the class D. If n ≥ 2 then k is said to be a C – Dcover of n if ever
Autor:
Andrew Granville, J. L. Selfridge
Publikováno v:
The Electronic Journal of Combinatorics. 8
We prove a conjecture of Irving Kaplansky which asserts that between any pair of consecutive positive squares there is a set of distinct integers whose product is twice a square. Along similar lines, our main theorem asserts that if prime $p$ divides
Publikováno v:
Number Theory: Proceedings of the First Conference of the Canadian Number Theory Association held at the Banff Center, Banff, Alberta, April 17–27, 1988
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::7074b824814da64fa9c0d01b3047192a
https://doi.org/10.1515/9783110848632-026
https://doi.org/10.1515/9783110848632-026
Autor:
Richard K. Guy, J. L. Selfridge
Publikováno v:
The American Mathematical Monthly. 105:766-767
Autor:
C. A. Nicol, J. L. Selfridge
Publikováno v:
The American Mathematical Monthly. 100:959
Publikováno v:
The American Mathematical Monthly. 100:404