Zobrazeno 1 - 6
of 6
pro vyhledávání: '"J. Kyle Brubaker"'
Autor:
Jernej Rudi Finžgar, Martin J. A. Schuetz, J. Kyle Brubaker, Hidetoshi Nishimori, Helmut G. Katzgraber
Publikováno v:
Physical Review Research, Vol 6, Iss 2, p 023063 (2024)
We propose and analyze the use of Bayesian optimization techniques to design quantum annealing schedules with minimal user and resource requirements. We showcase our scheme with results for two paradigmatic spin models. We find that Bayesian optimiza
Externí odkaz:
https://doaj.org/article/f2b613213af74958b0efaef4910948e2
Publikováno v:
Physical Review Research, Vol 4, Iss 4, p 043131 (2022)
We show how graph neural networks can be used to solve the canonical graph coloring problem. We frame graph coloring as a multiclass node classification problem and utilize an unsupervised training strategy based on the statistical physics Potts mode
Externí odkaz:
https://doaj.org/article/2e28c2843c6c4696af8a618cd8c8ec03
We provide a comprehensive reply to the comment written by Chiara Angelini and Federico Ricci-Tersenghi [arXiv:2206.13211] and argue that the comment singles out one particular non-representative example problem, entirely focusing on the maximum inde
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::23555962c19cd9de597afec77dc257e3
http://arxiv.org/abs/2302.03602
http://arxiv.org/abs/2302.03602
We provide a comprehensive reply to the comment written by Stefan Boettcher [arXiv:2210.00623] and argue that the comment singles out one particular non-representative example problem, entirely focusing on the maximum cut problem (MaxCut) on sparse g
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ee4e1881be563108e15c853aa4dba0bc
Autor:
Martin J.A. Schuetz, J. Kyle Brubaker, Henry Montagu, Yannick van Dijk, Johannes Klepsch, Philipp Ross, Andre Luckow, Mauricio G.C. Resende, Helmut G. Katzgraber
We solve robot trajectory planning problems at industry-relevant scales. Our end-to-end solution integrates highly versatile random-key algorithms with model stacking and ensemble techniques, as well as path relinking for solution refinement. The cor
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3002c131cc431525c949cc987a79634c
http://arxiv.org/abs/2206.03651
http://arxiv.org/abs/2206.03651
Combinatorial optimization problems are pervasive across science and industry. Modern deep learning tools are poised to solve these problems at unprecedented scales, but a unifying framework that incorporates insights from statistical physics is stil
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9a74e3867a89c1eca9389b058defe3e5
https://resolver.caltech.edu/CaltechAUTHORS:20220505-181556200
https://resolver.caltech.edu/CaltechAUTHORS:20220505-181556200