Zobrazeno 1 - 10
of 56
pro vyhledávání: '"J. F. van Diejen"'
Autor:
J. F. van Diejen
Publikováno v:
Communications in Mathematical Physics. 397:967-994
Publikováno v:
Advances in Mathematics, 392
Let $\hat{\mathfrak{g}}$ be an untwisted affine Lie algebra or the twisted counterpart thereof (which excludes the affine Lie algebras of type $\widehat{BC}_n=A^{(2)}_{2n}$). We present an affine Pieri rule for a basis of periodic Macdonald spherical
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::215e335a213b68b5c3f72aaf24684645
http://arxiv.org/abs/2305.01931
http://arxiv.org/abs/2305.01931
Autor:
J. F. van Diejen, E. Emsiz
We present Chebyshev type cubature rules for the exact integration of rational symmetric functions with poles on prescribed coordinate hyperplanes. Here the integration is with respect to the densities of unitary Jacobi ensembles stemming from the Ha
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::321deef3be5b719b8e5b8ac4ce6b27b4
Publikováno v:
Journal of Algebra and Its Applications.
We construct the basic representation of the double affine Hecke algebra at critical level [Formula: see text] associated to an irreducible reduced affine root system [Formula: see text] with a reduced gradient root system. For [Formula: see text] of
Autor:
J. F. van Diejen
Publikováno v:
Proceedings of the American Mathematical Society. 149:2291-2304
Autor:
J. F. van Diejen
Publikováno v:
Transformation Groups.
Autor:
J. F. van Diejen, E. Emsiz
Publikováno v:
IMA Journal of Numerical Analysis. 41:998-1030
Discrete orthogonality relations for Hall-Littlewood polynomials are employed, so as to derive cubature rules for the integration of homogeneous symmetric functions with respect to the density of the circular unitary ensemble (which originates from t
Autor:
J. F. van Diejen, E. Emsiz
Publikováno v:
Journal of Differential Equations. 268:4525-4543
Starting from the hyperoctahedral multivariate hypergeometric function of Heckman and Opdam (associated with the $BC_n$ root system), we arrive -- via partial confluent limits in the sense of Oshima and Shimeno -- at solutions of the eigenvalue equat
Autor:
J. F. van Diejen
Publikováno v:
Proceedings of the American Mathematical Society. 147:5239-5249
Recently, it was observed that the roots of the Askey-Wilson polynomial are retrieved at the unique global minimum of an associated strictly convex Morse function [J. F. van Diejen and E. Emsiz, Lett. Math. Phys. 109 (2019), pp. 89–112]. The purpos
Autor:
J. F. van Diejen
Publikováno v:
Journal of Functional Analysis. 282:109256
For positive integers n and c with c ≥ 2 n (= the Coxeter number of the hyperoctahedral group of signed permutations of degree n), we present a finite-dimensional discrete orthogonality relation for Macdonald's three-parameter hyperoctahedral Hall-