Zobrazeno 1 - 7
of 7
pro vyhledávání: '"J. D. McNeal"'
Autor:
L. D. Edholm, J. D. McNeal
Publikováno v:
The Journal of Geometric Analysis. 30:1293-1311
Sobolev irregularity of the Bergman projection on a family of domains containing the Hartogs triangle is shown. On the Hartogs triangle itself, a sub-Bergman projection is shown to satisfy better Sobolev norm estimates than its Bergman projection.
Autor:
J. D. McNeal, L. D. Edholm
Publikováno v:
The Journal of Geometric Analysis. 27:2658-2683
Regularity and irregularity of the Bergman projection on $L^p$ spaces is established on a natural family of bounded, pseudoconvex domains. The family is parameterized by a real variable $\gamma$. A surprising consequence of the analysis is that, when
Autor:
J. D. McNeal, Linda Chen
Publikováno v:
Advances in Mathematics. 360:106930
Solution operators for the equation ∂ ¯ u = f are constructed on general product domains in C n . When the factors are one-dimensional, the operator is a simple integral operator: specific derivatives of f are integrated against iterated Cauchy ke
Autor:
J. Xiong, J. D. McNeal
A classical observation of Riesz says that truncations of a general $\sum_{n=0}^\infty a_n z^n$ in the Hardy space $H^1$ do not converge in $H^1$. A substitute positive result is proved: these partial sums always converge in the Bergman norm $A^1$. T
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b8390fe68b9d2477e92e229c67bd373e
Expected duality and approximation properties are shown to fail on Bergman spaces of domains in C n , via examples. When the domain admits an operator satisfying certain mapping properties, positive duality and approximation results are proved. Such
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9e5dd332516dc086025ca737f95d903a
Autor:
Elias M. Stein, J. D. Mcneal
Publikováno v:
Mathematische Zeitschrift. 224:519-553
Autor:
J. D. McNeal, Elias M. Stein
Publikováno v:
Duke Math. J. 73, no. 1 (1994), 177-199