Zobrazeno 1 - 10
of 15
pro vyhledávání: '"J. Bency"'
Publikováno v:
IROS
Fast and efficient path generation is critical for robots operating in complex environments. This motion planning problem is often performed in a robot’s actuation or configuration space, where popular pathfinding methods such as A*, RRT*, get expo
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c625f0bd1fd3243776afcbbdad07fa69
http://arxiv.org/abs/1904.11102
http://arxiv.org/abs/1904.11102
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Xiaochen Liu, Ramesh Govindan, Rahul Urgaonkar, Hang Qiu, Kevin S. Chan, B.S. Manjunath, Archith J. Bency, Swati Rallapalli
Publikováno v:
IoTDI
Qiu, H; Liu, X; Rallapalli, S; Bency, AJ; Chan, K; Urgaonkar, R; et al.(2018). Kestrel: Video Analytics for Augmented Multi-Camera Vehicle Tracking.. UC Santa Barbara: Retrieved from: http://www.escholarship.org/uc/item/9vx914mp
Qiu, H; Liu, X; Rallapalli, S; Bency, AJ; Chan, K; Urgaonkar, R; et al.(2018). Kestrel: Video Analytics for Augmented Multi-Camera Vehicle Tracking.. UC Santa Barbara: Retrieved from: http://www.escholarship.org/uc/item/9vx914mp
In the future, the video-enabled camera will be the most pervasive type of sensor in the Internet of Things. Such cameras will enable continuous surveillance through heterogeneous camera networks consisting of fixed camera systems as well as cameras
Publikováno v:
ICRA
Fast and efficient motion planning algorithms are crucial for many state-of-the-art robotics applications such as self-driving cars. Existing motion planning methods become ineffective as their computational complexity increases exponentially with th
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::02ca2fdaa6e9782961a62a3998443133
Publikováno v:
ICDSC
This work introduces a multimodal multiview camera network for role identification and re-identification in an Intensive Care Unit (ICU) room, where identifying individuals is not permitted. The analysis challenges include imaging conditions such as
Publikováno v:
WACV
Bency, AJ; Rallapalli, S; Ganti, RK; Srivatsa, M; & Manjunath, BS. (2017). Beyond Spatial Auto-Regressive Models: Predicting Housing Prices with Satellite Imagery. UC Santa Barbara: Retrieved from: http://www.escholarship.org/uc/item/77c0438f
Bency, AJ; Rallapalli, S; Ganti, RK; Srivatsa, M; & Manjunath, BS. (2017). Beyond Spatial Auto-Regressive Models: Predicting Housing Prices with Satellite Imagery. UC Santa Barbara: Retrieved from: http://www.escholarship.org/uc/item/77c0438f
When modeling geo-spatial data, it is critical to capture spatial correlations for achieving high accuracy. Spatial Auto-Regression (SAR) is a common tool used to model such data, where the spatial contiguity matrix (W) encodes the spatial correlatio
Autor:
T Kannan, S Haldar, Joel Shyam Klinton, Kuldeep Singh Sachdeva, Banurekha Velayutham, S Jayasankar, Chandrasekaran Padmapriyadarsini, Ashwani Khanna, Dina Nair, Soumya Swaminathan, J Bency
Publikováno v:
The international journal of tuberculosis and lung disease : the official journal of the International Union against Tuberculosis and Lung Disease. 20(12)
Introduction Sputum culture conversion in pulmonary multidrug-resistant tuberculosis (MDR-TB) is important to make treatment-related decisions and prevent transmission of disease. Objective To identify factors associated with sputum culture conversio
Publikováno v:
Bency, AJ; Karthikeyan, S; De Leo, C; Sunderrajan, S; & Manjunath, BS. (2017). Search Tracker: Human-Derived Object Tracking in the Wild Through Large-Scale Search and Retrieval. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 27(8), 1803-1814. doi: 10.1109/TCSVT.2016.2555718. UC Santa Barbara: Retrieved from: http://www.escholarship.org/uc/item/3r39r46k
IEEE Transactions on Circuits and Systems for Video Technology, vol 27, iss 8
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, vol 27, iss 8
IEEE Transactions on Circuits and Systems for Video Technology, vol 27, iss 8
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, vol 27, iss 8
Humans use context and scene knowledge to easily localize moving objects in conditions of complex illumination changes, scene clutter and occlusions. In this paper, we present a method to leverage human knowledge in the form of annotated video librar
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ff8c7e2c63f9cde91c2fcd107096847b
http://arxiv.org/abs/1602.01890
http://arxiv.org/abs/1602.01890
Publikováno v:
Computer Vision – ECCV 2016 ISBN: 9783319464473
ECCV (1)
ECCV (1)
Object localization is an important computer vision problem with a variety of applications. The lack of large scale object-level annotations and the relative abundance of image-level labels makes a compelling case for weak supervision in the object l
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::645778275b3fbf2c08474b1e20aadc5c
https://doi.org/10.1007/978-3-319-46448-0_43
https://doi.org/10.1007/978-3-319-46448-0_43