Zobrazeno 1 - 10
of 296
pro vyhledávání: '"J. Baschnagel"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
The European physical journal. E, Soft matter. 45(8)
Focusing on non-ergodic macroscopic systems, we reconsider the variances [Formula: see text] of time averages [Formula: see text] of time-series [Formula: see text]. The total variance [Formula: see text] (direct average over all time series) is know
Publikováno v:
Journal of Chemical Physics
Journal of Chemical Physics, 2022, 156 (16), pp.164505. ⟨10.1063/5.0085800⟩
Journal of Chemical Physics, 2022, 156 (16), pp.164505. ⟨10.1063/5.0085800⟩
International audience; The spatiotemporal correlations of the local stress tensor in supercooled liquids are studied both theoretically and by molecular dynamics simulations of a two-dimensional (2D) polydisperse Lennard-Jones system. Asymptotically
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::feb28432e6b6c8eb053a07f2aa975f03
https://hal.science/hal-03806940/document
https://hal.science/hal-03806940/document
Publikováno v:
The European physical journal. E, Soft matter. 44(10)
We investigate simple models for strictly non-ergodic stochastic processes [Formula: see text] (t being the discrete time step) focusing on the expectation value v and the standard deviation [Formula: see text] of the empirical variance [Formula: see
Publikováno v:
Journal of Chemical Physics
Journal of Chemical Physics, 2022, 156 (23), pp.234902. ⟨10.1063/5.0094536⟩
Journal of Chemical Physics, 2022, 156 (23), pp.234902. ⟨10.1063/5.0094536⟩
For polymer chains, the torsional potential is an important intramolecular energy influencing chain flexibility and segmental dynamics. Through molecular dynamics simulations of an atomistic model for melts of cis– trans-1,4-polybutadiene (PBD), we
Publikováno v:
The European physical journal. E, Soft matter. 44(4)
We investigate the standard deviation [Formula: see text] of the variance [Formula: see text] of time series [Formula: see text] measured over a finite sampling time [Formula: see text] focusing on non-ergodic systems where independent "configuration
Publikováno v:
European Physical Journal E: Soft matter and biological physics
European Physical Journal E: Soft matter and biological physics, 2021, 44 (10), pp.125. ⟨10.1140/epje/s10189-021-00129-3⟩
European Physical Journal E: Soft matter and biological physics, 2021, 44 (10), pp.125. ⟨10.1140/epje/s10189-021-00129-3⟩
We investigate simple models for strictly non-ergodic stochastic processes $x_t$ ($t$ being the discrete time step) focusing on the expectation value $v$ and the standard deviation $\delta v$ of the empirical variance $v[x]$ of finite time series $x$
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::470ab6e3290fab1ec64efd486549e412
Publikováno v:
ACS Macro Letters. 8:123-127
We utilize atomistic molecular dynamics (MD) simulations to study local structural changes inside a polyelectrolyte complex consisting of poly(styrenesulfonate) (PSS) and poly(diallyldimethylammonium) (PDADMA) upon densification, in analogy to ultrac
Publikováno v:
Physical Review E : Statistical, Nonlinear, and Soft Matter Physics
Physical Review E : Statistical, Nonlinear, and Soft Matter Physics, American Physical Society, 2018, ⟨10.1103/PhysRevE.98.062502⟩
Physical Review E
Physical Review E, 2018, 98 (6), pp.062502. ⟨10.1103/PhysRevE.98.062502⟩
Physical Review E : Statistical, Nonlinear, and Soft Matter Physics, American Physical Society, 2018, ⟨10.1103/PhysRevE.98.062502⟩
Physical Review E
Physical Review E, 2018, 98 (6), pp.062502. ⟨10.1103/PhysRevE.98.062502⟩
Using molecular dynamics simulation of a polymer glass model we investigate free-standing polymer films focusing on the in-plane shear modulus $\ensuremath{\mu}$, defined by means of the stress-fluctuation formula, as a function of temperature $T$, f