Zobrazeno 1 - 10
of 168
pro vyhledávání: '"J. Brizard"'
This complete introduction to the use of modern ray tracing techniques in plasma physics describes the powerful mathematical methods generally applicable to vector wave equations in non-uniform media, and clearly demonstrates the application of these
Autor:
Alain J. Brizard, Anthony A. Chan
Publikováno v:
Frontiers in Astronomy and Space Sciences, Vol 9 (2022)
Hamiltonian formulations of quasilinear theory are presented for the cases of uniform and nonuniform magnetized plasmas. First, the standard quasilinear theory of Kennel and Engelmann (Kennel, Phys. Fluids, 1966, 9, 2377) is reviewed and reinterprete
Externí odkaz:
https://doaj.org/article/90ef3da0ba4845039efc96dc477124f5
Autor:
Joshua W. Burby, Alain J. Brizard
Publikováno v:
Physics Letters A. 383:2172-2175
A new gauge-free electromagnetic gyrokinetic theory is developed, in which the gyrocenter equations of motion and the gyrocenter phase-space transformation are expressed in terms of the perturbed electromagnetic fields, instead of the usual perturbed
Publikováno v:
Physics of Plasmas. 29:060701
This letter reports on a metriplectic formulation of collisional, nonlinear full-$f$ electromagnetic gyrokinetic theory compliant with energy conservation and monotonic entropy production. In an axisymmetric background magnetic field, the toroidal an
Autor:
Alain J. Brizard
The Hamiltonian structure of the guiding-center Vlasov-Maxwell equations is presented in terms of a Hamiltonian functional and a guiding-center Vlasov-Maxwell bracket. The bracket, which is shown to satisfy the Jacobi identity exactly, is used to sho
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0557d674ebb7f1b82fea39ba4efcef4a
Autor:
Alain J. Brizard
The exact energy and angular-momentum conservation laws are derived by Noether method for the Hamiltonian and symplectic representations of the gauge-free electromagnetic gyrokinetic Vlasov-Maxwell equations. These gyrokinetic equations, which are so
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::81b5f614e61ef85d6b796b7c45fd5d51
Autor:
Samuel M. Berry, Alain J. Brizard
The asymptotic limit-cycle analysis of mathematical models for oscillating chemical reactions is presented. In this work, after a brief presentation of mathematical preliminaries applied to the biased Van der Pol oscillator, we consider a two-dimensi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::78d9eda16acc53dabcc0f915bfd57285
The problem of the charged-particle motion in an axisymmetric magnetic-dipole geometry is used to assess the validity of Hamiltonian guiding-center theory, which includes higher-order corrections associated with guiding-center polarization induced by
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5b0fd932cd75553209043e57950b789a
Autor:
Cristel Chandre, Alain J. Brizard
Publikováno v:
Physics of Plasmas
Physics of Plasmas, 2020, 27, pp.122111
Physics of Plasmas, American Institute of Physics, 2020, 27, pp.122111
Physics of Plasmas, 2020, 27, pp.122111
Physics of Plasmas, American Institute of Physics, 2020, 27, pp.122111
The Hamiltonian formulations for the perturbed Vlasov-Maxwell equations and the perturbed ideal magnetohydrodynamics (MHD) equations are expressed in terms of the perturbation derivative $\partial{\cal F}/\partial\epsilon \equiv [{\cal F}, {\cal S}]$
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::056c4a9644dfd71ac06b9c0022fd6e37
https://hal.science/hal-02932384
https://hal.science/hal-02932384
The action principle by Low [Proc. R. Soc. Lond. A 248, 282--287] for the classic Vlasov-Maxwell system contains a mix of Eulerian and Lagrangian variables. This renders the Noether analysis of reparametrization symmetries inconvenient, especially si
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c58d008dd431134ca23ec6d628696e03
http://arxiv.org/abs/1912.06477
http://arxiv.org/abs/1912.06477