Zobrazeno 1 - 10
of 69
pro vyhledávání: '"J Schinas"'
Publikováno v:
Investment Management & Financial Innovations, Vol 15, Iss 3, Pp 351-369 (2018)
Modern trading systems are mechanic, run automatically on computers inside trading platforms and decide their position against the market through optimized parameters and algorithmic strategies. These systems now, in most cases, comprise high frequen
Externí odkaz:
https://doaj.org/article/5abbbcf83b844bc1990378f9d320fa27
Publikováno v:
Opuscula Mathematica, Vol 38, Iss 1, Pp 95-115 (2018)
In this paper we prove the stability of the zero equilibria of two systems of difference equations of exponential type, which are some extensions of an one-dimensional biological model. The stability of these systems is investigated in the special ca
Externí odkaz:
https://doaj.org/article/008878a4e34241ca867204c0dec19d4e
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2021, Iss 67, Pp 1-13 (2021)
Under the exponential trichotomy condition we study the Hyers–Ulam stability for the linear partial difference equation: \[ x_{n+1,m}=A_nx_{n,m}+B_{n,m}x_{n,m+1}+f(x_{n,m}),\qquad n,m\in \mathbb{Z} \] where $A_n$ is a $k\times k$ matrix whose eleme
Publikováno v:
Mathematical Methods in the Applied Sciences. 44:4316-4329
In this paper, we study the stability of the zero equilibrium and the occurrence of flip bifurcation on the following system of difference equations: \[x_{n+1} =a_1\frac{y_n}{b_1+y_n} +c_1\frac{x_ne^{k_1-d_1x_n}}{1+e^{k_1-d_1x_n}},\]\\ \[y_{n+1} =a_2
Autor:
G. Papaschinopoulos, C. J. Schinas
Publikováno v:
International Journal of Mathematics and Mathematical Sciences, Vol 23, Iss 12, Pp 839-848 (2000)
We study the oscillatory behavior, the periodicity and the asymptotic behavior of the positive solutions of the system of two nonlinear difference equations xn+1=A+xn−1/yn and yn+1=A+yn−1/xn, where A is a positive constant, and n=0,1,….
Externí odkaz:
https://doaj.org/article/027db83817f74f76bcb015cf51eec797
In this paper, we study the conditions under which the following symmetric system of difference equations with exponential terms: \[ x_{n+1} =a_1\frac{y_n}{b_1+y_n} +c_1\frac{x_ne^{k_1-d_1x_n}}{1+e^{k_1-d_1x_n}},\] \[ y_{n+1} =a_2\frac{x_n}{b_2+x_n}
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::acef9d19a1e9cb5d2ee44e96f34cb3e9
https://doi.org/10.22541/au.161338138.88313798/v1
https://doi.org/10.22541/au.161338138.88313798/v1
Publikováno v:
Mathematical Methods in the Applied Sciences.
Publikováno v:
Computing. 101:319-337
In this paper, the performance of Binary Increase Adaptive Decrease (TCP-BIAD) congestion control algorithm in high-speed long-distance networks is evaluated. As its name implies, this TCP variant is a combination of an enhanced binary increase algor
Publikováno v:
Mathematical Methods in the Applied Sciences. 41:7936-7948
Autor:
C. J. Schinas, D. Th. Vezeris
Publikováno v:
International Journal of Trade, Economics and Finance. 9:170-173