Zobrazeno 1 - 10
of 25
pro vyhledávání: '"J Laali"'
Autor:
S.M Mohammadi, J Laali
Publikováno v:
پژوهشهای ریاضی, Vol 2, Iss 1, Pp 33-46 (2016)
Let S be a semigroup with a left multiplier on S. A new product on S is defined by related to S and such that S and the new semigroup ST have the same underlying set as S. It is shown that if is injective then where, is the extension of on Also, we s
Externí odkaz:
https://doaj.org/article/efe41ed28a544c389f548214c8b58126
Publikováno v:
Positivity. 23:1215-1224
The purpose of this article is to study the concepts Arens regularity for semigroup algebras $$M_a(S)$$ , $$\ell ^1(S)$$ , and $${ LUC}(S)^*$$ . We give a necessary and sufficient condition for $$M_a(S)$$ to be pointwise Arens regular. We then give s
Autor:
S. M. Mohammadi, J. Laali
Publikováno v:
Journal of Function Spaces, Vol 2014 (2014)
Let S be a semigroup with a left multiplier T on S. There exists a new semigroup ST, which depends on S and T, which has the same underlying space as S. We study the question of involutions on ST and a Banach algebra AT. We find a condition of T unde
Externí odkaz:
https://doaj.org/article/7ea78072530b4d3c8024d529d0724ee3
Autor:
R. Ramezani, J. Laali
Publikováno v:
Ann. Funct. Anal. 9, no. 4 (2018), 551-565
Let $K$ be a hypergroup. The purpose of this article is to study the notions of amenability of the hypergroup algebras $L(K)$ , $M(K)$ , and $L(K)^{**}$ . Among other results, we obtain a characterization of approximate amenability of $L(K)^{**}$ . M
Autor:
Susan Mohammadi, J Laali
Publikováno v:
Mathematical Researches. 2:33-46
Publikováno v:
Superlattices and Microstructures. 143:106551
In all the available simulator software, the absorption spectrum is calculated by a simplified, mathematical function which provides an approximation of the real spectrum. Here, the absorption spectrum of MAPbX3 perovskites and ZnO, as absorber and e
Autor:
J. Laali, F. Ghahramani
Publikováno v:
Bulletin of the Australian Mathematical Society. 65:191-197
questions 1. Is 21 Arens regular when 21** is amenable? 2. Is 21 weakly amenable when 21** is weakly amenable? For the origin of these questions see [2, 3]. We show that under certain additional assumptions on 21 or 21** the answer to either one of t
Publikováno v:
The Quarterly Journal of Mathematics. 47:187-198
Autor:
M. Fozouni, J. Laali
Publikováno v:
Miskolc Mathematical Notes. 17:413
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.