Zobrazeno 1 - 10
of 11
pro vyhledávání: '"J L Davison"'
Autor:
J. L. Davison
Publikováno v:
Proceedings of the Edinburgh Mathematical Society. 45:653-671
Precise bounds are given for the quantity$$ L(\alpha)=\frac{\limsup_{m\rightarrow\infty}(1/m)\ln q_m}{\liminf_{m\rightarrow\infty}(1/m)\ln q_m}, $$where $(q_m)$ is the classical sequence of denominators of convergents to the continued fraction $\alph
Autor:
J. L. Davison, Jeffrey Shallit
Publikováno v:
Monatshefte f�r Mathematik. 111:119-126
We discuss certain simple continued fractions that exhibit a type of “self-similar” structure: their partial quotients are formed by perturbing and shifting the denominators of their convergents. We prove that all such continued fractions represe
It is widely believed that the continued fraction expansion of every irrational algebraic number $\alpha$ either is eventually periodic (and we know that this is the case if and only if $\alpha$ is a quadratic irrational), or it contains arbitrarily
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a5fdc61329e28c7b21e2de8ef32c7ca1
http://arxiv.org/abs/math/0511682
http://arxiv.org/abs/math/0511682
Autor:
J. L. Davison
Publikováno v:
Proceedings of the American Mathematical Society. 63:29-32
Let α = ( 1 + √ 5 ) / 2 \alpha = (1 + \surd 5)/2 . In this paper it is proved that \[ [ u n k ] [unk] \] where t n = 2 f n − 2 {t_n} = {2^{{f_{n - 2}}}} and ( f n ) ({f_n}) is the Fibonacci sequence. It is also shown that T ( α ) T(\alpha ) is
Autor:
J. L. Davison, William W. Adams
Publikováno v:
Proceedings of the American Mathematical Society. 65:194-198
For any irrational number α \alpha and integer a > 1 a > 1 , the continued fraction of ( a − 1 ) ∑ r = 1 ∞ 1 / a [ r α ] (a - 1)\sum _{r = 1}^\infty 1/{a^{[r\alpha ]}} is computed explicitly in terms of the continued fraction of α \alpha .
Autor:
J. L. Davison
Publikováno v:
Canadian Mathematical Bulletin. 20:71-75
Let Sn denote the permutation group on {1, 2, 3, …, n}. Let k ≥ 1 and n ≥ 1 be integers. For σ ∊ Sn we define ([1]) mk, n: Sn → Z byLet pn ∊ Sn be the reverse permutation: that is
Autor:
J. L. Davison
Publikováno v:
Canadian Mathematical Bulletin. 18:425-426
In this note we give an elementary proof of the following.Let be an integer. n≥1 Then, every positive even integer less than or equal to n(n2—1)/3 can be expressed as a sum ofn squares of integers from the set {0, 1, 2, …, n - 1}.
Autor:
J. L. Davison
Publikováno v:
The Auk. 5:430-431
Autor:
J L Davison
Publikováno v:
The Auk. 4:263-264
Autor:
J. L. Davison
Publikováno v:
The Auk. 8:396-396