Zobrazeno 1 - 10
of 143
pro vyhledávání: '"J F, LUCAS"'
Autor:
Petra Vinklerová, Petra Ovesná, Jitka Hausnerová, Johanna M. A. Pijnenborg, Peter J. F. Lucas, Casper Reijnen, Stephanie Vrede, Vít Weinberger
Publikováno v:
Frontiers in Oncology, Vol 12 (2022)
IntroductionAmong industrialized countries, endometrial cancer is a common malignancy with generally an excellent outcome. To personalize medicine, we ideally compile as much information as possible concerning patient prognosis prior to effecting an
Externí odkaz:
https://doaj.org/article/6f2e7615f68f4c819aee78bed95cbfab
Publikováno v:
PLoS ONE, Vol 16, Iss 10 (2021)
The color of particular parts of a flower is often employed as one of the features to differentiate between flower types. Thus, color is also used in flower-image classification. Color labels, such as ‘green’, ‘red’, and ‘yellow’, are use
Externí odkaz:
https://doaj.org/article/d33a0c00ff364354930646d9d5bfef66
Autor:
Casper Reijnen, Evangelia Gogou, Nicole C M Visser, Hilde Engerud, Jordache Ramjith, Louis J M van der Putten, Koen van de Vijver, Maria Santacana, Peter Bronsert, Johan Bulten, Marc Hirschfeld, Eva Colas, Antonio Gil-Moreno, Armando Reques, Gemma Mancebo, Camilla Krakstad, Jone Trovik, Ingfrid S Haldorsen, Jutta Huvila, Martin Koskas, Vit Weinberger, Marketa Bednarikova, Jitka Hausnerova, Anneke A M van der Wurff, Xavier Matias-Guiu, Frederic Amant, ENITEC Consortium, Leon F A G Massuger, Marc P L M Snijders, Heidi V N Küsters-Vandevelde, Peter J F Lucas, Johanna M A Pijnenborg
Publikováno v:
PLoS Medicine, Vol 17, Iss 5, p e1003111 (2020)
BACKGROUND:Bayesian networks (BNs) are machine-learning-based computational models that visualize causal relationships and provide insight into the processes underlying disease progression, closely resembling clinical decision-making. Preoperative id
Externí odkaz:
https://doaj.org/article/2c91f1408d514e2686d60f6f1e077189
Publikováno v:
Dal, G H, Laarman, A W, Hommersom, A & Lucas, P J F 2021, ' A compositional approach to probabilistic knowledge compilation ', International Journal of Approximate Reasoning, vol. 138, pp. 38-66 . https://doi.org/10.1016/j.ijar.2021.07.007
International Journal of Approximate Reasoning, 138, 38-66. Elsevier
International Journal of Approximate Reasoning, 138, 38-66. Elsevier Science Inc.
International Journal of Approximate Reasoning, 138, 38-66
International Journal of Approximate Reasoning, 138, pp. 38-66
International Journal of Approximate Reasoning, 138, 38-66. Elsevier
International Journal of Approximate Reasoning, 138, 38-66. Elsevier Science Inc.
International Journal of Approximate Reasoning, 138, 38-66
International Journal of Approximate Reasoning, 138, pp. 38-66
Bayesian networks (BN) are a popular representation for reasoning under uncertainty. The analysis of many real-world use cases, that in principle can be modeled by BNs, suffers however from the computational complexity of inference. Inference methods
Publikováno v:
PLoS ONE, Vol 16, Iss 10, p e0259036 (2021)
PLoS ONE
PLoS ONE, 16(10 October):e0259036. Public Library of Science
PLoS ONE, Vol 16, Iss 10 (2021)
PLoS ONE
PLoS ONE, 16(10 October):e0259036. Public Library of Science
PLoS ONE, Vol 16, Iss 10 (2021)
The color of particular parts of a flower is often employed as one of the features to differentiate between flower types. Thus, color is also used in flower-image classification. Color labels, such as ‘green’, ‘red’, and ‘yellow’, are use
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Liu, M, Stella, F, Hommersom, A, Lucas, P J F, Boer, L & Bischoff, E 2019, ' A comparison between discrete and continuous time Bayesian networks in learning from clinical time series data with irregularity ', Artificial Intelligence in Medicine, vol. 95, pp. 104-117 . https://doi.org/10.1016/j.artmed.2018.10.002
Artificial intelligence in medicine, 95, 104-117. Elsevier
Artificial Intelligence in Medicine, 95, 104-117. Elsevier
Artificial Intelligence in Medicine, 95, 104-117
Artificial Intelligence in Medicine, 95, pp. 104-117
Artificial intelligence in medicine, 95, 104-117. Elsevier
Artificial Intelligence in Medicine, 95, 104-117. Elsevier
Artificial Intelligence in Medicine, 95, 104-117
Artificial Intelligence in Medicine, 95, pp. 104-117
Background:Recently, mobile devices, such as smartphones, have been introduced into healthcare research to substitute paper diaries as data-collection tools in the home environment. Such devices support collecting patient data at different time point
Autor:
Peter Bronsert, Martin Koskas, Peter J. F. Lucas, Nicole C.M. Visser, Hilde Engerud, Marketa Bednarikova, Eva Colas, Ingfrid S. Haldorsen, Antonio Gil-Moreno, Jitka Hausnerová, Jone Trovik, Jutta Huvila, Leon F.A.G. Massuger, Xavier Matias-Guiu, Jordache Ramjith, Frédéric Amant, Armando Reques, Louis J.M. van der Putten, Casper Reijnen, Johanna M.A. Pijnenborg, Marc P.L.M. Snijders, Johan Bulten, Camilla Krakstad, Koen Van de Vijver, Gemma Mancebo, Heidi V.N. Küsters-Vandevelde, Maria Santacana, Anneke A. M. van der Wurff, Marc Hirschfeld, Vít Weinberger, Evangelia Gogou
Publikováno v:
PLoS medicine, 17(5):e1003111. Public Library of Science
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
PLoS Medicine
Repositorio Abierto de la UdL
Universitad de Lleida
e1003111
PLOS Medicine
Plos Medicine, 17, 5
PLoS Medicine, Vol 17, Iss 5, p e1003111 (2020)
Plos Medicine, 17
PLOS MEDICINE
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
PLoS Medicine
Repositorio Abierto de la UdL
Universitad de Lleida
e1003111
PLOS Medicine
Plos Medicine, 17, 5
PLoS Medicine, Vol 17, Iss 5, p e1003111 (2020)
Plos Medicine, 17
PLOS MEDICINE
Background Bayesian networks (BNs) are machine-learning–based computational models that visualize causal relationships and provide insight into the processes underlying disease progression, closely resembling clinical decision-making. Preoperative
Autor:
Scott McLachlan, Norman Fenton, Kudakwashe Dube, Martin Neil, Graham A. Hitman, Evangelia Kyrimi, Peter J. F. Lucas, Magda Osman
Concerns about the practicality and effectiveness of using Contact Tracing Apps (CTA) to reduce the spread of COVID19 have been well documented and, in the UK, led to the abandonment of the NHS CTA shortly after its release in May 2020. One of the ke
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4feff7a33ea1cc5e7587adbd8487f039
https://doi.org/10.1101/2020.07.15.20154286
https://doi.org/10.1101/2020.07.15.20154286
Publikováno v:
International Journal of Approximate Reasoning, 88, 169-191
Bueno, M L P, Hommersom, A, Lucas, P J F & Linard, A 2017, ' Asymmetric hidden Markov models ', International Journal of Approximate Reasoning, vol. 88, pp. 169-191 . https://doi.org/10.1016/j.ijar.2017.05.011
International Journal of Approximate Reasoning, 88, 169-191. Elsevier Science Inc.
International Journal of Approximate Reasoning, 88, pp. 169-191
Bueno, M L P, Hommersom, A, Lucas, P J F & Linard, A 2017, ' Asymmetric hidden Markov models ', International Journal of Approximate Reasoning, vol. 88, pp. 169-191 . https://doi.org/10.1016/j.ijar.2017.05.011
International Journal of Approximate Reasoning, 88, 169-191. Elsevier Science Inc.
International Journal of Approximate Reasoning, 88, pp. 169-191
In many problems involving multivariate time series, hidden Markov models (HMMs) are often employed for modeling complex behavior over time. HMMs can, however, require large number of states, what can lead to poor problem insight and model overfittin