Zobrazeno 1 - 10
of 100
pro vyhledávání: '"Jürgen Prestin"'
Autor:
Jürgen Prestin, Yevgeniya V. Semenova
Publikováno v:
Frontiers in Applied Mathematics and Statistics, Vol 10 (2024)
This paper deals with the approximation error of trigonometric interpolation for multivariate functions of bounded variation in the sense of Hardy-Krause. We propose interpolation operators related to both the tensor product and sparse grids on the m
Externí odkaz:
https://doaj.org/article/be7a2be7f78044a8878d1b5bc4a9841f
Autor:
Jürgen Prestin, Hanna Veselovska
Publikováno v:
Frontiers in Applied Mathematics and Statistics, Vol 6 (2020)
The problem of hidden periodicity of a bivariate exponential sum f(n)=∑j=1Najexp(-i〈ωj,n〉), where a1, …, aN ∈ ℂ\{0} and n ∈ ℤ2, is to recover frequency vectors ω1,…,ωN∈[0,2π) 2 using finitely many samples of f. Recently, this
Externí odkaz:
https://doaj.org/article/e0e0f5825e4a42bfa8a89e8f0cf32fec
Publikováno v:
Наукові вісті Національного технічного університету України "Київський політехнічний інститут", Vol 0, Iss 4, Pp 7-16 (2017)
Background. We investigate the relationship between the boundedness of Lebesgue constants for the Lagrange polynomial interpolation on a compact subset of \[\mathbb R\] and the existence of a Faber basis in the space of continuous functions on this
Externí odkaz:
https://doaj.org/article/1c9cd755da264fa7ba126ceb2660c072
Autor:
Jürgen Prestin, Ewald Quak
Publikováno v:
Journal of Numerical Analysis and Approximation Theory, Vol 30, Iss 2 (2001)
As pointed out recently by Strichartz [5], the arclength of the graph \(\Gamma(S_N(f))\) of the partial sums \(S_N(f)\) of the Fourier series of a jump function \(f\) grows with the order of \(\log N\). In this paper we discuss the behaviour of the a
Externí odkaz:
https://doaj.org/article/0183416299404a0c967563f1bbfc14d9
Autor:
Jürgen Prestin
Publikováno v:
Mitteilungen der Deutschen Mathematiker-Vereinigung. 29:208-215
Autor:
R. M. Asharabi, Jürgen Prestin
Publikováno v:
Numerical Algorithms. 86:1421-1441
The bivariate sinc-Gauss sampling formula is introduced in Asharabi and Prestin (IMA J. Numer. Anal. 36:851–871, 2016) to approximate analytic functions of two variables which satisfy certain growth condition. In this paper, we apply this formula t
Autor:
Jürgen Prestin, Nadiia Derevianko
Publikováno v:
ETNA - Electronic Transactions on Numerical Analysis. 52:249-269
This paper is devoted to the study of approximation of Gaussian functions bytheir partial Fourier sums of degree $N \in \mathbb{N}$ with respect to thespherical Gauss-Laguerre (SGL) basis in the weighted Hilbert space$L_2(\mathbb{R}^3, \omega_\lambda
Computing eigenpairs of two-parameter Sturm-Liouville systems using the bivariate sinc-Gauss formula
Autor:
R. M. Asharabi, Jürgen Prestin
Publikováno v:
Communications on Pure & Applied Analysis. 19:4143-4158
The use of sampling methods in computing eigenpairs of two-parameter boundary value problems is extremely rare. As far as we know, there are only two studies up to now using the bivariate version of the classical and regularized sampling series. Thes
Autor:
Jürgen Prestin
Publikováno v:
Mitteilungen der Deutschen Mathematiker-Vereinigung. 27:130-136
Autor:
Andreas Felgenhauer, Jürgen Prestin, Wolfgang Moldenhauer, Michael Rüsing, Roger Labahn, Martin Welk, Wolfgang Ludwicki, Elias Wegert, Hans-Dietrich Gronau
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::f15c75bb05b78cc2efd456982fdf5570
https://doi.org/10.1007/978-3-662-63183-6
https://doi.org/10.1007/978-3-662-63183-6