Zobrazeno 1 - 10
of 19
pro vyhledávání: '"Jürgen Angst"'
Autor:
Jürgen Angst, Camille Tardif
Publikováno v:
Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques
Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, Institut Henri Poincaré (IHP), 2020, 56 (4), pp.2792-2821. ⟨10.1214/20-AIHP1059⟩
Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, 2020, 56 (4), pp.2792-2821. ⟨10.1214/20-AIHP1059⟩
Ann. Inst. H. Poincaré Probab. Statist. 56, no. 4 (2020), 2792-2821
Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, Institut Henri Poincaré (IHP), 2020, 56 (4), pp.2792-2821. ⟨10.1214/20-AIHP1059⟩
Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, 2020, 56 (4), pp.2792-2821. ⟨10.1214/20-AIHP1059⟩
Ann. Inst. H. Poincaré Probab. Statist. 56, no. 4 (2020), 2792-2821
In this paper, we determine the Poisson boundary of the relativistic Brownian motion in two classes of Lorentzian manifolds, namely model manifolds of constant scalar curvature and Robertson--Walker space-times, the latter constituting a large family
Autor:
Guillaume Poly, Jürgen Angst
Publikováno v:
Annals of Probability
Annals of Probability, 2020, 48 (5), pp.2145-2175. ⟨10.1214/19-AOP1418⟩
Ann. Probab. 48, no. 5 (2020), 2145-2175
Annals of Probability, Institute of Mathematical Statistics, 2020, 48 (5), pp.2145-2175. ⟨10.1214/19-AOP1418⟩
Annals of Probability, 2020, 48 (5), pp.2145-2175. ⟨10.1214/19-AOP1418⟩
Ann. Probab. 48, no. 5 (2020), 2145-2175
Annals of Probability, Institute of Mathematical Statistics, 2020, 48 (5), pp.2145-2175. ⟨10.1214/19-AOP1418⟩
International audience; We study the absolute continuity with respect to the Lebesgue measure of the distribution of the nodal volume associated with a smooth, non-degenerated and stationary Gaussian field $(f(x), {x \in \mathbb R^d})$. Under mild co
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d2a3cc4ee31109e4d852982779d37a40
https://hal.science/hal-02359411
https://hal.science/hal-02359411
Autor:
Jürgen Angst, Guillaume Poly
Publikováno v:
International Mathematics Research Notices
International Mathematics Research Notices, 2022, 7, pp.4931-4968. ⟨10.1093/imrn/rnaa201⟩
International Mathematics Research Notices, 2022, 7, pp.4931-4968. ⟨10.1093/imrn/rnaa201⟩
In this paper, we investigate the local universality of the number of zeros of a random periodic signal of the form $S_n(t)=\sum_{k=1}^n a_k f(k t)$, where $f$ is a $2\pi-$periodic function satisfying weak regularity conditions and where the coeffici
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0c3cec76a90e2762ef5908c417cac3f4
http://arxiv.org/abs/1910.07469
http://arxiv.org/abs/1910.07469
Publikováno v:
2017-62. 2017
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society, 2019, 147 (1), pp.205-214. ⟨10.1090/proc/14216⟩
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society, 2022, 375 (10), pp.7209-7260. ⟨10.1090/tran/8742⟩
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society, 2019, 147 (1), pp.205-214. ⟨10.1090/proc/14216⟩
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society, 2022, 375 (10), pp.7209-7260. ⟨10.1090/tran/8742⟩
We further investigate the relations between the large degree asymptotics of the number of real zeros of random trigonometric polynomials with dependent coefficients and the underlying correlation function. We consider trigonometric polynomials of th
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::170fae728fa7926e34111f7ff3e3bad5
https://hal.science/hal-01535749
https://hal.science/hal-01535749
Autor:
Guillaume Poly, Jürgen Angst
Publikováno v:
Electronic Journal of Probability
Electronic Journal of Probability, Institute of Mathematical Statistics (IMS), 2017, 22 (article 59), pp.1-24. 〈10.1214/17-EJP77〉
Electronic Journal of Probability, Institute of Mathematical Statistics (IMS), 2017, 22 (article 59), pp.1-24. ⟨10.1214/17-EJP77⟩
Electronic Journal of Probability, 2017, 22 (article 59), pp.1-24. ⟨10.1214/17-EJP77⟩
Electron. J. Probab.
Electronic Journal of Probability, Institute of Mathematical Statistics (IMS), 2017, 22 (article 59), pp.1-24. 〈10.1214/17-EJP77〉
Electronic Journal of Probability, Institute of Mathematical Statistics (IMS), 2017, 22 (article 59), pp.1-24. ⟨10.1214/17-EJP77⟩
Electronic Journal of Probability, 2017, 22 (article 59), pp.1-24. ⟨10.1214/17-EJP77⟩
Electron. J. Probab.
International audience; We introduce a new, weak Cramer condition on the characteristic function of a random vector which does not only hold for all continuous distributions but also for discrete (non-lattice) ones in a generic sense. We then prove t
Autor:
Mathias Beiglböck, Martin Huesmann, Makoto Maejima, Nicolas Privault, Franck Maunoury, Anna Aksamit, Ismael Bailleul, Nicolas Juillet, David Applebaum, Christophe Profeta, Dai Taguchi, Peter Kern, Kilian Raschel, Alexis Devulder, Libo Li, Camille Tardif, Anita Behme, Thomas Simon, Gilles Pagès, Florian Stebegg, Oleskiy Khorunzhiy, Jürgen Angst, Stéphane Laurent, Cédric Lecouvey, Songzi Li, Wendelin Werner, Alexander Lindner, Matyas Barczy
Publikováno v:
Donati-Martin, Catherine; Lejay, Antoine; Rouault, Alain. Springer, 2168, pp.506, 2016, Lecture Notes in Mathematics, 978-3-319-44464-2. ⟨10.1007/978-3-319-44465-9⟩
Donati-Martin, Catherine; Lejay, Antoine; Rouault, Alain. France. 2168, Springer, pp.506, 2016, Lecture Notes in Mathematics, 978-3-319-44464-2. ⟨10.1007/978-3-319-44465-9⟩
Donati-Martin, Catherine; Lejay, Antoine; Rouault, Alain. France. 2168, Springer, pp.506, 2016, Lecture Notes in Mathematics, 978-3-319-44464-2. 〈10.1007/978-3-319-44465-9〉
Lecture Notes in Mathematics ISBN: 9783319444642
Séminaire de Probabilités XLVIII
Donati-Martin, Catherine; Lejay, Antoine; Rouault, Alain. France. 2168, Springer, pp.506, 2016, Lecture Notes in Mathematics, 978-3-319-44464-2. ⟨10.1007/978-3-319-44465-9⟩
Donati-Martin, Catherine; Lejay, Antoine; Rouault, Alain. France. 2168, Springer, pp.506, 2016, Lecture Notes in Mathematics, 978-3-319-44464-2. 〈10.1007/978-3-319-44465-9〉
Lecture Notes in Mathematics ISBN: 9783319444642
Séminaire de Probabilités XLVIII
International audience
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::fd5712cf08ac5c95230c7161d24bc8ab
https://inria.hal.science/hal-01403845
https://inria.hal.science/hal-01403845
Publikováno v:
28 pages, 6 figures. 2016
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society, American Mathematical Society, 2018, 370 (12), pp.8331-8357. ⟨10.1090/tran/7255⟩
Transactions of the American Mathematical Society, 2018, 370 (12), pp.8331-8357. ⟨10.1090/tran/7255⟩
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society, American Mathematical Society, 2018, 370 (12), pp.8331-8357. ⟨10.1090/tran/7255⟩
Transactions of the American Mathematical Society, 2018, 370 (12), pp.8331-8357. ⟨10.1090/tran/7255⟩
We consider random trigonometric polynomials of the form \[ f_n(x,y)=\sum_{1\le k,l \le n} a_{k,l} \cos(kx) \cos(ly), \] where the entries $(a_{k,l})_{k,l\ge 1}$ are i.i.d. random variables that are centered with unit variance. We investigate the len
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e9d82b0c4c9848d8bf3c63900b16f6ef
https://hal.archives-ouvertes.fr/hal-01389483
https://hal.archives-ouvertes.fr/hal-01389483
Autor:
Camille Tardif, Jürgen Angst
Publikováno v:
Séminaire de Probabilités XLVII
Catherine Donati-Martin; Antoine Lejay; Alain Rouault. Séminaire de Probabilités XLVII, 2168, Springer, pp.199-229, 2016, Lecture Notes in Mathematics, 978-3-319-44464-2. 〈10.1007/978-3-319-44465-9_8〉
Catherine Donati-Martin; Antoine Lejay; Alain Rouault. Séminaire de Probabilités XLVII, 2168, Springer, pp.199-229, 2016, Lecture Notes in Mathematics, 978-3-319-44464-2. ⟨10.1007/978-3-319-44465-9_8⟩
Lecture Notes in Mathematics ISBN: 9783319444642
Catherine Donati-Martin; Antoine Lejay; Alain Rouault. Séminaire de Probabilités XLVII, 2168, Springer, pp.199-229, 2016, Lecture Notes in Mathematics, 978-3-319-44464-2. 〈10.1007/978-3-319-44465-9_8〉
Catherine Donati-Martin; Antoine Lejay; Alain Rouault. Séminaire de Probabilités XLVII, 2168, Springer, pp.199-229, 2016, Lecture Notes in Mathematics, 978-3-319-44464-2. ⟨10.1007/978-3-319-44465-9_8⟩
Lecture Notes in Mathematics ISBN: 9783319444642
We present a method that allows, under suitable equivariance and regularity conditions, to determine the Poisson boundary of a diffusion starting from the Poisson boundary of a sub-diffusion of the original one. We then give two examples of applicati
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::375db106516a58c6639a0a1fa57603ab
https://hal.archives-ouvertes.fr/hal-00951900
https://hal.archives-ouvertes.fr/hal-00951900
Publikováno v:
Electronic Journal of Probability
Electronic Journal of Probability, Institute of Mathematical Statistics (IMS), 2015, 20, pp.110. 〈10.1214/EJP.v20-4054〉
Electronic Journal of Probability, 2015, 20 (none), pp.110. ⟨10.1214/EJP.v20-4054⟩
Electronic Journal of Probability, Institute of Mathematical Statistics (IMS), 2015, 20 (none), pp.110. ⟨10.1214/EJP.v20-4054⟩
Electron. J. Probab.
Electronic Journal of Probability, Institute of Mathematical Statistics (IMS), 2015, 20, pp.110. 〈10.1214/EJP.v20-4054〉
Electronic Journal of Probability, 2015, 20 (none), pp.110. ⟨10.1214/EJP.v20-4054⟩
Electronic Journal of Probability, Institute of Mathematical Statistics (IMS), 2015, 20 (none), pp.110. ⟨10.1214/EJP.v20-4054⟩
Electron. J. Probab.
We consider in this work a one parameter family of hypoelliptic diffusion processes on the unit tangent bundle $T^1 \mathcal M$ of a Riemannian manifold $(\mathcal M,g)$, collectively called kinetic Brownian motions, that are random perturbations of
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b2e209e6a2d18f01ee5d169681bbeb98
https://hal.sorbonne-universite.fr/hal-01263340/document
https://hal.sorbonne-universite.fr/hal-01263340/document
Autor:
Jürgen Angst
Publikováno v:
ESAIM: Probability and Statistics
ESAIM: Probability and Statistics, 2015, 19, pp.502-514. ⟨10.1051/ps/2015003⟩
ESAIM: Probability and Statistics, EDP Sciences, 2015, 19, pp.502-514. 〈10.1051/ps/2015003〉
ESAIM: Probability and Statistics, EDP Sciences, 2015, 19, pp.502-514. ⟨10.1051/ps/2015003⟩
ESAIM: Probability and Statistics, 2015, 19, pp.502-514. ⟨10.1051/ps/2015003⟩
ESAIM: Probability and Statistics, EDP Sciences, 2015, 19, pp.502-514. 〈10.1051/ps/2015003〉
ESAIM: Probability and Statistics, EDP Sciences, 2015, 19, pp.502-514. ⟨10.1051/ps/2015003⟩
We study in details the long-time asymptotic behavior of a relativistic diffusion taking values in the unitary tangent bundle of a curved Lorentzian manifold, namely a spatially flat and fast expanding Robertson-Walker space-time. We prove in particu
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::45f4389e08b4c28648a04e139f1085ff
https://hal.science/hal-01044439
https://hal.science/hal-01044439