Zobrazeno 1 - 10
of 13
pro vyhledávání: '"Jørgen Endal"'
Publikováno v:
Calculus of Variations and Partial Differential Equations. 62
We consider the evolution problem associated to the infinity fractional Laplacian introduced by Bjorland, Caffarelli and Figalli (2012) as the infinitesimal generator of a non-Brownian tug-of-war game. We first construct a class of viscosity solution
Publikováno v:
Advanced Nonlinear Studies
The classical Stefan problem is one of the most studied free boundary problems of evolution type. Recently, there has been interest in treating the corresponding free boundary problem with nonlocal diffusion. We start the paper by reviewing the main
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::44148e2b9c0368ee24456483bb22ff54
https://hdl.handle.net/11250/2980604
https://hdl.handle.net/11250/2980604
Publikováno v:
Journal des Mathématiques Pures et Appliquées
A result by Courr\`ege says that linear translation invariant operators satisfy the maximum principle if and only if they are of the form $\mathcal{L}=\mathcal{L}^{\sigma,b}+\mathcal{L}^\mu$ where $$ \mathcal{L}^{\sigma,b}[u](x)=\text{tr}(\sigma \sig
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e004ce147f4759b0cb13632758ab3afb
http://arxiv.org/abs/1907.02495
http://arxiv.org/abs/1907.02495
Publikováno v:
SIAM Journal on Numerical Analysis
BIRD: BCAM's Institutional Repository Data
instname
BIRD: BCAM's Institutional Repository Data
instname
We develop a unified and easy to use framework to study robust fully discrete numerical methods for nonlinear degenerate diffusion equations $$ \partial_t u-\mathfrak{L}^{\sigma,\mu}[\varphi(u)]=f \quad\quad\text{in}\quad\quad \mathbb{R}^N\times(0,T)
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7e073a2c8fb453ca9830db3d7154b1cb
http://hdl.handle.net/11250/2637804
http://hdl.handle.net/11250/2637804
We study well-posedness and equivalence of different notions of solutions with finite energy for nonlocal porous medium type equations of the form $$\partial_tu-A\varphi(u)=0.$$ These equations are possibly degenerate nonlinear diffusion equations wi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::0b03331c2994b3ff1cdcbdb77f2634c6
https://doi.org/10.4171/186-1/7
https://doi.org/10.4171/186-1/7
Publikováno v:
BIRD: BCAM's Institutional Repository Data
instname
SIAM Journal on Numerical Analysis
instname
SIAM Journal on Numerical Analysis
\noindent We develop a unified and easy to use framework to study robust fully discrete numerical methods for nonlinear degenerate diffusion equations $$ \partial_t u-\mathfrak{L}[\varphi(u)]=f(x,t) \qquad\text{in}\qquad \mathbb{R}^N\times(0,T), $$ w
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::56165efbd314db6161c1162b1243c874
https://hdl.handle.net/20.500.11824/870
https://hdl.handle.net/20.500.11824/870
Publikováno v:
Comptes rendus. Mathematique
We present a theory of well-posedness and a priori estimates for bounded distributional (or very weak) solutions of $$\partial_tu-\mathfrak{L}^{\sigma,\mu}[\varphi(u)]=g(x,t)\quad\quad\text{in}\quad\quad \mathbb{R}^N\times(0,T),$$ where $\varphi$ is
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::df58a4250159b435924f4ffa26ff15d0
Publikováno v:
Advances in Mathematics
BIRD: BCAM's Institutional Repository Data
instname
BIRD: BCAM's Institutional Repository Data
instname
We study the uniqueness, existence, and properties of bounded distributional solutions of the initial value problem problem for the anomalous diffusion equation $\partial_tu-\mathcal{L}^\mu [\varphi (u)]=0$. Here $\mathcal{L}^\mu$ can be any nonlocal
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::786e395c4d159ef67023288d2e8e519b
http://hdl.handle.net/11250/2465675
http://hdl.handle.net/11250/2465675
Autor:
Jørgen Endal, Espen R. Jakobsen
Publikováno v:
3957–3982
SIAM Journal on Mathematical Analysis
SIAM Journal on Mathematical Analysis
We obtain new L1 contraction results for bounded entropy solutions of Cauchy problems for degenerate parabolic equations. The equations we consider have possibly strongly degenerate local or nonlocal diffusion terms. As opposed to previous results, o