Zobrazeno 1 - 10
of 58
pro vyhledávání: '"Jörg Hakenberg"'
A comprehensive benchmark of kernel methods to extract protein-protein interactions from literature.
Publikováno v:
PLoS Computational Biology, Vol 6, p e1000837 (2010)
The most important way of conveying new findings in biomedical research is scientific publication. Extraction of protein-protein interactions (PPIs) reported in scientific publications is one of the core topics of text mining in the life sciences. Re
Externí odkaz:
https://doaj.org/article/162c1482002241ca9c9557d4882ff2f8
Autor:
Wanqiong Qiao, Brenden Chen, Inga Peter, Robert J. Desnick, Dana Doheny, Makiko Yasuda, Constanza Solis-Villa, Rong Chen, Ramakrishnan Srinivasan, Manisha Balwani, Jörg Hakenberg
Publikováno v:
Human Mutation. 37:1215-1222
Acute intermittent porphyria results from hydroxymethylbilane synthase (HMBS) mutations that markedly decrease HMBS enzymatic activity. This dominant disease is diagnosed when heterozygotes have life-threatening acute attacks, while most heterozygote
Autor:
Eric J. Small, Lawrence Fong, Karen E. Knudsen, Brad Sickler, Robert E. Reiter, Charles J. Ryan, Theodore C. Goldstein, Tomasz M. Beer, Martin E. Gleave, Rahul Aggarwal, Julian S. Gehring, Rajdeep Das, John Shon, Scott M. Dehm, Alan Ashworth, David A. Quigley, Ha X. Dang, Terence W. Friedlander, R. Keira Cheetham, Denise Playdle, Paul Lloyd, Serafim Batzoglou, Jack F. Youngren, Jin Zhang, Nathan A. Lack, Adam Foye, Felix Y. Feng, Jörg Hakenberg, Adina M. Bailey, Owen N. Witte, Abhijit Parolia, Scott A. Tomlins, Travis J. Barnard, Donavan T. Cheng, Jiaoti Huang, Li Zhang, P. G. Febbo, Alexander W. Wyatt, Kim N. Chi, Matthew Rettig, Vishal Kothari, Daniel E. Spratt, Housheng Hansen He, Haolong Li, George Thomas, Arnold Liao, Shuang G. Zhao, Hui Li, Joshua M. Stuart, Won Kim, Primo N. Lara, Christopher G. Maher, Jonathan Chou, Joshi J. Alumkal, Amina Zoubeidi, Marc D. Perry, Ruhollah Moussavi-Baygi, Luke A. Gilbert, Arul M. Chinnaiyan, Christopher P. Evans, Hani Goodarzi, Marcin Cieslik, Kyle Kai-How Farh
Publikováno v:
Cell, vol 174, iss 3
Quigley, DA; Dang, HX; Zhao, SG; Lloyd, P; Aggarwal, R; Alumkal, JJ; et al.(2018). Genomic Hallmarks and Structural Variation in Metastatic Prostate Cancer. Cell, 174(3), 758-769.e9. doi: 10.1016/j.cell.2018.06.039. UC Davis: Retrieved from: http://www.escholarship.org/uc/item/796124qb
Quigley, DA; Dang, HX; Zhao, SG; Lloyd, P; Aggarwal, R; Alumkal, JJ; et al.(2018). Genomic Hallmarks and Structural Variation in Metastatic Prostate Cancer. Cell, 174(3), 758-769.e9. doi: 10.1016/j.cell.2018.06.039. UC Davis: Retrieved from: http://www.escholarship.org/uc/item/796124qb
© 2018 Elsevier Inc. While mutations affecting protein-coding regions have been examined across many cancers, structural variants at the genome-wide level are still poorly defined. Through integrative deep whole-genome and -transcriptome analysis of
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1928a409b1341bcafb393804416865b5
https://escholarship.org/uc/item/796124qb
https://escholarship.org/uc/item/796124qb
Autor:
Nondas Fritzilas, Jinbo Xu, Yanjun Li, Hong Gao, Laksshman Sundaram, Jeremy F. McRae, Samskruthi Reddy Padigepati, John Shon, Jack A. Kosmicki, Xiaolin Li, Serafim Batzoglou, Kyle Kai-How Farh, Anindita Dutta, Jörg Hakenberg
Publikováno v:
Nature genetics. 50(8)
Millions of human genomes and exomes have been sequenced, but their clinical applications remain limited due to the difficulty of distinguishing disease-causing mutations from benign genetic variation. Here we demonstrate that common missense variant
Autor:
John Shon, Kyle Kai-How Farh, Xiaolin Li, Serafim Batzoglou, Yanjun Li, Hong Gao, Jeremy F. McRae, Jörg Hakenberg, Laksshman Sundaram, Nondas Fritzilas, Samskruthi Reddy Padigepati, Jinbo Xu, Jack A. Kosmicki, Anindita Dutta
Publikováno v:
Nature genetics
Millions of human genomes and exomes have been sequenced, but their clinical applications remain limited due to the difficulty of distinguishing disease-causing mutations from benign genetic variation. Here we demonstrate that common missense variant
Publikováno v:
Bioinformatics
Motivation: A plethora of sequenced and genotyped disease cohorts is available to the biomedical research community, spread across many portals and represented in various formats. Results: We have gathered several large studies, including GERA and GR
Autor:
Kristin L. Ayers, Benjamin S. Glicksberg, Roman Kosoy, Rong Chen, Meng Ma, Li Li, Khader Shameer, Marcus A. Badgeley, Gabriel E. Hoffman, Joel T. Dudley, Jörg Hakenberg, Eric E. Schadt, Shuyu Dan Li, Nam Pho, Noam D. Beckmann, Chirag J. Patel
Publikováno v:
Bioinformatics
Motivation: Underrepresentation of racial groups represents an important challenge and major gap in phenomics research. Most of the current human phenomics research is based primarily on European populations; hence it is an important challenge to exp
Autor:
Dmitry Voronov, Robert Leaman, Shanshan Liang, Barry Lumpkin, Chitta Baral, Võ Ha Nguyên, Luis Tari, S. Anwar, Jörg Hakenberg
Publikováno v:
Journal of Biomedical Informatics
Graphical abstractExcerpt from the data sheet for the human epidermal growth factor receptor, EGFR, showing a summary of information on the gene, lists of predicted related entities, and examples for a genetic variant and disease association. View th
Autor:
Phan Huy Tu, Luis Tari, Jörg Hakenberg, Tran Cao Son, Chitta Baral, Yi Chen, Graciela Gonzalez
Publikováno v:
IEEE Transactions on Knowledge and Data Engineering. 24:86-99
Information extraction systems are traditionally implemented as a pipeline of special-purpose processing modules targeting the extraction of a particular kind of information. A major drawback of such an approach is that whenever a new extraction goal
Autor:
Vãu Há Nguyên, Domonkos Tikk, Jörg Hakenberg, Illés Solt, Quang Long Nguyen, Chitta Baral, Ulf Leser, Luis Tari
Publikováno v:
Computational Intelligence. 27:665-680
The BioNLP’09 Shared Task deals with extracting information on molecular events, such as gene expression and protein localization, from natural language text. Information in this benchmark are given as tuples including protein names, trigger terms