Zobrazeno 1 - 10
of 50
pro vyhledávání: '"Jérôme Buzzi"'
Publikováno v:
International Mathematics Research Notices.
We give a proof of Viana’s [19] conjecture on physical measures, in the special case of $C^\infty $ surface diffeomorphisms, and using the analysis of entropy and Lyapunov exponents we developed in [5]. Burguet [3] has recently proved a stronger re
Autor:
Alexandre, Armengol, Jérôme, Buzzi, Frédérique, Mahalin-Strub, Christine, Lacaque Liégeois, François, Horn, Pierre, Strub
Publikováno v:
Revue de l'infirmiere. 70(269)
Many nurses and healthcare students have undergone emergency training to reinforce the resuscitation teams faced with a massive influx of patients affected by the severe acute respiratory syndrome coronavirus 2. Trainers from the Grand-Est region hav
Autor:
Jérôme Buzzi
We show that symbolic finite-to-one extensions of the type constructed by O. Sarig for surface diffeomorphisms induce H\"older-continuous conjugacies on large sets. We deduce this from their Bowen property. This notion, introduced in a joint work wit
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6e82f07167417dc7d8f8018757a4984e
https://hal.archives-ouvertes.fr/hal-03099987
https://hal.archives-ouvertes.fr/hal-03099987
Publikováno v:
Dynamical Systems
Dynamical Systems, Taylor & Francis, 2021, 36 (3), pp.527-535. ⟨10.1080/14689367.2021.1933914⟩
Dynamical Systems, Taylor & Francis, 2021, 36 (3), pp.527-535. ⟨10.1080/14689367.2021.1933914⟩
We study the one parameter family of potential functions $q\varphi^u$ associated with the geometric potential $\varphi^u$ for the geodesic flow of a compact rank 1 surface of nonpositive curvature. For $q 1$ it is known that an invariant measure is a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e0343c7141407cbd3de9ff6b9bb8eebc
Autor:
Christine Lacaque Liégeois, François Horn, Alexandre Armengol, Frédérique Mahalin-Strub, Pierre Strub, Jérôme Buzzi
Publikováno v:
La Revue de l'Infirmière. 70:40-41
Many nurses and healthcare students have undergone emergency training to reinforce the resuscitation teams faced with a massive influx of patients affected by the severe acute respiratory syndrome coronavirus 2. Trainers from the Grand-Est region hav
Publikováno v:
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society, American Mathematical Society, 2018, 370 (9), pp.6685-6734. ⟨10.1090/tran/7380⟩
Transactions of the American Mathematical Society, American Mathematical Society, 2018, 370 (9), pp.6685-6734. ⟨10.1090/tran/7380⟩
A classical construction due to Newhouse creates horseshoes from hyperbolic periodic orbits with large period and weak domination through local $C^1$-perturbations. Our main theorem shows that, when one works in the $C^1$ topology, the entropy of suc
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::88eaae1a6453e1b7b3f5ca5fd216025e
https://hal.archives-ouvertes.fr/hal-02394715
https://hal.archives-ouvertes.fr/hal-02394715
Publikováno v:
Proceedings of the American Mathematical Society. 143:2991-2997
For a topological dynamical system consisting of a continuous map f, and a (not necessarily compact) subset Z of X, Bowen (1973) defined a dimension-like version of entropy, h_X(f,Z). In the same work, he introduced a notion of entropy-conjugacy for
Publikováno v:
Nonlinearity
Nonlinearity, IOP Publishing, 2017, 30 (9), pp.3613-3636. ⟨10.1088/1361-6544/aa803f⟩
Nonlinearity, IOP Publishing, 2017, 30 (9), pp.3613-3636. ⟨10.1088/1361-6544/aa803f⟩
A number of techniques have been developed to perturb the dynamics of $C^1$-diffeomorphisms and to modify the properties of their periodic orbits. For instance, one can locally linearize the dynamics, change the tangent dynamics, or create local homo
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::afb4ed5a28ddf32d44e88e6ba434eb0f
https://hal.archives-ouvertes.fr/hal-02367501
https://hal.archives-ouvertes.fr/hal-02367501
Autor:
Jérôme Buzzi
Publikováno v:
Ergodic Theory and Dynamical Systems. 34:1770-1793
For any $1\leq r\lt \infty $, we build on the disk, and therefore on any manifold, a ${C}^{r} $-diffeomorphism with no measure of maximal entropy.
Publikováno v:
ERGODIC THEORY AND DYNAMICAL SYSTEMS
Artículos CONICYT
CONICYT Chile
instacron:CONICYT
Artículos CONICYT
CONICYT Chile
instacron:CONICYT
We show that a class of robustly transitive diffeomorphisms originally described by Mañé are intrinsically ergodic. More precisely, we obtain an open set of diffeomorphisms which fail to be uniformly hyperbolic and structurally stable, but neverthe