Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Jérémy Guéré"'
Autor:
Jérémy GUÉRÉ
We give a new proof of the computation of Hodge integrals we have previously obtained for the quantum singularity (FJRW) theory of chain polynomials. It uses the classical localization formula of Atiyah--Bott and we phrase our proof in a general fram
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9b21b71f7904896187a4b75bd4639a64
http://arxiv.org/abs/1906.04100
http://arxiv.org/abs/1906.04100
Autor:
Jérémy Guéré, Alexandr Buryak
Publikováno v:
Journal de Mathématiques Pures et Appliquées. 106:837-865
The double ramification hierarchy is a new integrable hierarchy of hamiltonian PDEs introduced recently by the first author. It is associated to an arbitrary given cohomological field theory. In this paper we study the double ramification hierarchy a
Publikováno v:
Communications in Mathematical Physics
Communications in Mathematical Physics, Springer Verlag, 2018, 363 (1), pp.191-260. ⟨10.1007/s00220-018-3235-4⟩
Communications in Mathematical Physics, 2018, 363 (1), pp.191-260. ⟨10.1007/s00220-018-3235-4⟩
Communications in Mathematical Physics, Springer Verlag, 2018, 363 (1), pp.191-260. ⟨10.1007/s00220-018-3235-4⟩
Communications in Mathematical Physics, 2018, 363 (1), pp.191-260. ⟨10.1007/s00220-018-3235-4⟩
In this paper we continue the study of the double ramification hierarchy of [Bur15]. After showing that the DR hierarchy satisfies tau-symmetry we define its partition function as the (logarithm of the) tau-function of the string solution and show th
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b91554fc61e6fa26feace9bc39f96c04
https://hal.archives-ouvertes.fr/hal-01899925
https://hal.archives-ouvertes.fr/hal-01899925
Autor:
Jérémy Guéré
Publikováno v:
Michigan Math. J. 66, iss. 4 (2017), 831-854
We study higher genus Fan--Jarvis--Ruan--Witten theory of any chain polynomial with any group of symmetries. Precisely, we give an explicit way to compute the cup product of Polishchuk and Vaintrob's virtual class with the top Chern class of the Hodg
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6e8faa37f68faf6dd17acf69ab544cd6
https://projecteuclid.org/euclid.mmj/1508810817
https://projecteuclid.org/euclid.mmj/1508810817
Publikováno v:
Geometry & Topology
Geom. Topol. 23, no. 7 (2019), 3537-3600
Geom. Topol. 23, no. 7 (2019), 3537-3600
In this paper we present a family of conjectural relations in the tautological ring of the moduli spaces of stable curves which implies the strong double ramification/Dubrovin-Zhang equivalence conjecture. Our tautological relations have the form of
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a4db9ef148536ad53314ab8eac9a6740
http://arxiv.org/abs/1705.03287
http://arxiv.org/abs/1705.03287
Autor:
Jérémy Guéré
Publikováno v:
Duke Math.J.
Duke Math.J., 2016, 165 (13), pp.2461-2527. 〈10.1215/00127094-3477235〉
Duke Math.J., 2016, 165 (13), pp.2461-2527. ⟨10.1215/00127094-3477235⟩
Duke Mathematical Journal
Duke Mathematical Journal, 2016, 165 (13), pp.2461-2527. ⟨10.1215/00127094-3477235⟩
Duke Math. J. 165, no. 13 (2016), 2461-2527
Duke Math.J., 2016, 165 (13), pp.2461-2527. 〈10.1215/00127094-3477235〉
Duke Math.J., 2016, 165 (13), pp.2461-2527. ⟨10.1215/00127094-3477235⟩
Duke Mathematical Journal
Duke Mathematical Journal, 2016, 165 (13), pp.2461-2527. ⟨10.1215/00127094-3477235⟩
Duke Math. J. 165, no. 13 (2016), 2461-2527
We provide a mirror symmetry theorem in a range of cases where the state-of-the-art techniques relying on concavity or convexity do not apply. More specifically, we work on a family of FJRW potentials named after Fan, Jarvis, Ruan, and Witten's quant
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5833d7fa658d669bf13c3562fd6908a6
https://hal.archives-ouvertes.fr/hal-01555035
https://hal.archives-ouvertes.fr/hal-01555035
Publikováno v:
International Mathematics Research Notices
In this paper we study various aspects of the double ramification (DR) hierarchy, introduced by the first author, and its quantization. We extend the notion of tau-symmetry to quantum integrable hierarchies and prove that the quantum DR hierarchy enj