Zobrazeno 1 - 10
of 51
pro vyhledávání: '"Jérémy Blanc"'
Publikováno v:
Épijournal de Géométrie Algébrique, Vol Volume 6 (2023)
In this paper we provide the complete classification of $\mathbb{P}^1$-bundles over smooth projective rational surfaces whose neutral component of the automorphism group is maximal. Our results hold over any algebraically closed field of characterist
Externí odkaz:
https://doaj.org/article/f96485d1657f45bc834dfd85045fb558
Autor:
Jérémy Blanc, Adrien Dubouloz
Publikováno v:
Épijournal de Géométrie Algébrique, Vol Volume 2 (2018)
We introduce a new invariant, the real (logarithmic)-Kodaira dimension, that allows to distinguish smooth real algebraic surfaces up to birational diffeomorphism. As an application, we construct infinite families of smooth rational real algebraic sur
Externí odkaz:
https://doaj.org/article/64abbd42d4ed4c1f9fc7d7a30f3d94e6
Autor:
Jérémy Blanc, Pierre-Marie Poloni
Publikováno v:
Annales de la Faculté des sciences de Toulouse : Mathématiques. 31:1391-1418
Autor:
Jérémy Blanc, Immanuel van Santen
Publikováno v:
Ergodic Theory and Dynamical Systems. 42:3551-3592
We study the possible dynamical degrees of automorphisms of the affine space$\mathbb {A}^n$. In dimension$n=3$, we determine all dynamical degrees arising from the composition of an affine automorphism with a triangular one. This generalizes the easi
Autor:
Jérémy Blanc, Egor Yasinsky
Publikováno v:
Journal de l’École polytechnique — Mathématiques. 7:1089-1112
We prove that the group of birational transformations of a Del Pezzo fibration of degree 3 over a curve is not simple, by giving a surjective group homomorphism to a free product of infinitely many groups of order 2. As a consequence we also obtain t
Autor:
Jérémy Blanc
We study the polynomial fibration induced by the equation of the Klein surfaces obtained as quotient of finite linear groups of automorphisms of the plane; this surfaces are of type A, D, E, corresponding to their singularities. The generic fibre of
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::456f4cbe87582a00cd794ae1e5f0e9d3
http://doc.rero.ch/record/331816/files/13366_2013_Article_183.pdf
http://doc.rero.ch/record/331816/files/13366_2013_Article_183.pdf
Autor:
Jérémy Blanc, Igor V. Dolgachev
We compute the automorphism group of the affine surfaces with the coordinate ring isomorphic to a cluster algebra of rank 2.
Comment: To appear in Transform. Groups
Comment: To appear in Transform. Groups
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::47b56e2b11219e989d05b68a102f6dce
http://doc.rero.ch/record/331935/files/31_2014_Article_9289.pdf
http://doc.rero.ch/record/331935/files/31_2014_Article_9289.pdf
Autor:
Jérémy Blanc, Immanuel van Santen
Publikováno v:
Transactions of the American Mathematical Society. 371:8429-8465
This article provides, over any field, infinitely many algebraic embeddings of the affine spaces $\mathbb{A}^1$ and $\mathbb{A}^2$ into smooth quadrics of dimension two and three respectively, which are pairwise non-equivalent under automorphisms of
Autor:
Jérémy Blanc, Jean-Philippe Furter
Publikováno v:
Annales Henri Lebesgue. 2:187-257
The Cremona group is the group of birational transformations of the plane. A birational transformation for which there exists a pencil of lines which is sent onto another pencil of lines is called a Jonqui\`eres transformation. By the famous Noether-
Publikováno v:
Acta Mathematica
Acta Mathematica, 2021, ⟨10.4310/ACTA.2021.v226.n2.a1⟩
Acta Mathematica, Royal Swedish Academy of Sciences, Institut Mittag-Leffler, 2021, ⟨10.4310/ACTA.2021.v226.n2.a1⟩
Acta Mathematica, 2021, ⟨10.4310/ACTA.2021.v226.n2.a1⟩
Acta Mathematica, Royal Swedish Academy of Sciences, Institut Mittag-Leffler, 2021, ⟨10.4310/ACTA.2021.v226.n2.a1⟩
We study large groups of birational transformations Bir(X), where X is a variety of dimension at least 3, defined over C or a subfield of C. Two prominent cases are when X is the projective space, in which case Bir(X) is the Cremona group of rank n,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a40ba195f32c644f699d51deedbbb2f6
https://hal.science/hal-01981369
https://hal.science/hal-01981369