Zobrazeno 1 - 10
of 286
pro vyhledávání: '"Iyer C"'
We propose a Self-supervised Anomaly Detection technique, called SeMAnD, to detect geometric anomalies in Multimodal geospatial datasets. Geospatial data comprises of acquired and derived heterogeneous data modalities that we transform to semanticall
Externí odkaz:
http://arxiv.org/abs/2309.15245
Self-supervised representation learning techniques utilize large datasets without semantic annotations to learn meaningful, universal features that can be conveniently transferred to solve a wide variety of downstream supervised tasks. In this work,
Externí odkaz:
http://arxiv.org/abs/2210.03289
Self-supervised representation learning techniques utilize large datasets without semantic annotations to learn meaningful, universal features that can be conveniently transferred to solve a wide variety of downstream supervised tasks. In this paper,
Externí odkaz:
http://arxiv.org/abs/2110.12521
Autor:
Iyer, C. V. Krishnakumar, Hou, Feili, Wang, Henry, Wang, Yonghong, Oh, Kay, Ganguli, Swetava, Pandey, Vipul
We present a no-code Artificial Intelligence (AI) platform called Trinity with the main design goal of enabling both machine learning researchers and non-technical geospatial domain experts to experiment with domain-specific signals and datasets for
Externí odkaz:
http://arxiv.org/abs/2106.11756
Autor:
Rajasree, S., Rajpal, K., Kartha, C. C., Sarma, P. S., Kutty, V. Raman, Iyer, C. S. P., Girija, G.
Publikováno v:
European Journal of Epidemiology, 2001 Jan 01. 17(6), 567-571.
Externí odkaz:
https://www.jstor.org/stable/3582995
Publikováno v:
2022 23rd IEEE International Conference on Mobile Data Management (MDM).
Self-supervised representation learning techniques utilize large datasets without semantic annotations to learn meaningful, universal features that can be conveniently transferred to solve a wide variety of downstream supervised tasks. In this paper,
Publikováno v:
Current Science, 2011 Mar 01. 100(5), 602-603.
Externí odkaz:
https://www.jstor.org/stable/24075752
Publikováno v:
Current Science, 2010 Mar 01. 98(5), 602-603.
Externí odkaz:
https://www.jstor.org/stable/24111806
Publikováno v:
In LWT - Food Science and Technology 2004 37(6):639-642
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.