Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Iwona Skrzypczak"'
Publikováno v:
Colloquium Mathematicum. 152:199-215
Autor:
Sylwia Dudek, Iwona Skrzypczak
Publikováno v:
Communications on Pure and Applied Analysis. 16:513-532
We investigate nonexistence of nonnegative solutions to a partial differential inequality involving the p ( x ){Laplacian of the form \begin{document}$- {\Delta _{p(x)}}u \geqslant \Phi (x,u(x),\nabla u(x))$ \end{document} in ${\mathbb{R}^n}$, as wel
Autor:
Iwona Skrzypczak
Publikováno v:
Nonlinear Differential Equations and Applications NoDEA. 21:841-868
We derive Hardy inequalities in weighted Sobolev spaces via anticoercive partial differential inequalities of elliptic type involving A-Laplacian −Δ A u = −divA(∇u) ≥ Φ, where Φ is a given locally integrable function and u is defined on an
Autor:
Iwona Skrzypczak
Publikováno v:
Banach Center Publications. 101:225-238
We apply general Hardy type inequalities, recently obtained by the author. As a consequence we obtain the family of Hardy—Poincare inequalities with certain constants, contributing to the question about precise constants in such inequalities posed
Autor:
Iwona Skrzypczak
Publikováno v:
Nonlinear Analysis: Theory, Methods & Applications. 93:30-50
We consider the anti-coercive partial differential inequality of elliptic type involving p -Laplacian: − Δ p u ≥ Φ , where Φ is a given locally integrable function and u is defined on an open subset Ω ⊆ R n . Knowing solutions, we derive Ca
Autor:
Iwona Skrzypczak, Agnieszka Kałamajska
Publikováno v:
Springer Proceedings in Mathematics & Statistics ISBN: 9789811061189
We apply the recent method of Drabek and the authors in order to construct the Hardy–Poincare–type inequalities $$\begin{aligned} \bar{C}_{\gamma ,n,p,r}\int _{\mathbb {R}^{n}}\ |\xi |^p \left( 1+r|x|^{\frac{p}{p-1}}\right) \left( 1+|x|^{\frac{p}
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::4034c47fcfe0edf129e7c0e85b78c9f7
https://doi.org/10.1007/978-981-10-6119-6_7
https://doi.org/10.1007/978-981-10-6119-6_7
Autor:
Jan Poleszczuk, Iwona Skrzypczak
Publikováno v:
Applicationes Mathematicae. 38:33-49