Zobrazeno 1 - 10
of 127
pro vyhledávání: '"Ivić, Aleksandar P."'
Publikováno v:
Strategic Management, Vol 28, Iss 4, Pp 66-72 (2023)
Background: Blockchain project implementation in smart cities represents a novel challenge in information technologies. Lack of functional framework and guidelines impact these implementations and add additional uncertainty. Authors in their research
Externí odkaz:
https://doaj.org/article/be803b768f914019903235bbdf691cb1
Autor:
Ivić, Aleksandar, Korolev, Maxim
Let $S(t) \;:=\; \frac{\displaystyle 1}{\displaystyle \pi}\arg \zeta(\frac{1}{2} + it)$. We prove that, for $T^{\,27/82+\varepsilon} \le H \le T$, we have $$ {\rm mes}\Bigl\{t\in [T, T+H]\;:\; S(t)>0\Bigr\} = \frac{H}{2} + O\left(\frac{H\log_3T}{\var
Externí odkaz:
http://arxiv.org/abs/1808.10768
Let $\gamma$ denote the imaginary parts of complex zeros $\rho = \beta+i\gamma$ of $\zeta(s)$. The problem of analytic continuation of the function $G(s) := \sum\limits_{\gamma > 0}\gamma^{-s}$ to the left of the line $\Re s = -1$ is investigated, an
Externí odkaz:
http://arxiv.org/abs/1808.01763
Autor:
Ivić, Aleksandar
It is shown explicitly how the sign of Hardy's function $Z(t)$ depends on the parity of the zero-counting function $N(T)$. Two existing definitions of this function are analyzed, and some related problems are discussed.
Comment: 7 pages
Comment: 7 pages
Externí odkaz:
http://arxiv.org/abs/1801.04711
Autor:
Ivić, Aleksandar
A discussion involving the evaluation of the sum $$\sum_{T<\g\le T+H}|\zeta(1/2+i\gamma)|^2$$ and some related integrals is presented, where $\gamma\,(>0)$ denotes imaginary parts of complex zeros of the Riemann zeta-function $\zeta(s)$. It is shown
Externí odkaz:
http://arxiv.org/abs/1801.01289
Autor:
Ivić, Aleksandar, Zhai, Wenguang
We prove that $$ \int_1^X\Delta(x)\Delta_3(x)\,dx \ll X^{13/9}\log^{10/3}X, \quad \int_1^X\Delta(x)\Delta_4(x)\,dx \ll_\varepsilon X^{25/16+\varepsilon}, $$ where $\Delta_k(x)$ is the error term in the asymptotic formula for the summatory function of
Externí odkaz:
http://arxiv.org/abs/1711.09589
Autor:
Ivić, Aleksandar
We investigate bounds for the multiplicities $m(\beta+i\gamma)$, where $\beta+i\gamma\,$ ($\beta\ge \1/2, \gamma>0)$ denotes complex zeros of $\zeta(s)$. It is seen that the problem can be reduced to the estimation of the integrals of the zeta-functi
Externí odkaz:
http://arxiv.org/abs/1706.08268
Autor:
Ivić, Aleksandar
Let as usual $Z(t) = \zeta(1/2+it)\chi^{-1/2}(1/2+it)$ denote Hardy's function, where $\zeta(s) = \chi(s)\zeta(1-s)$. Assuming the Riemann hypothesis upper and lower bounds for some integrals involving $Z(t)$ and $Z'(t)$ are proved. It is also proved
Externí odkaz:
http://arxiv.org/abs/1612.01698
Autor:
Ivić, Aleksandar
If $0 < \gamma_1 \le \gamma_2 \le \gamma_3 \le \ldots$ denote ordinates of complex zeros of the Riemann zeta-function $\zeta(s)$, then several results involving the maximal order of $\gamma_{n+1}-\gamma_n$ and the sum $$ \sum_{0<\gamma_n\le T}{(\gamm
Externí odkaz:
http://arxiv.org/abs/1610.01317
Autor:
Gonek, Steven M., Ivić, Aleksandar
We investigate the distribution of positive and negative values of Hardy's function $$ Z(t) := \zeta(1/2+it){\chi(1/2+it)}^{-1/2}, \quad \zeta(s) = \chi(s)\zeta(1-s). $$ In particular we prove that $$ \mu\bigl(I_{+}(T,T)\bigr) \;\gg T\; \qquad \hbox{
Externí odkaz:
http://arxiv.org/abs/1604.00517