Zobrazeno 1 - 10
of 31
pro vyhledávání: '"Ivanshin, Pyotr"'
The method of boundary curve reparametrization is applied to construction of the approximate analytical conformal mapping of the unit disk onto an arbitrary given finite domain with a boundary smooth at every point but fininte number of acute angle p
Externí odkaz:
http://arxiv.org/abs/2307.03516
Autor:
Ivanshin, Pyotr N.
The method of reduction of a Fredholm integral equation to the linear system is generalized to construction of a complex potential --- an analytic function in an infinite multiply connected domain with a simple pole at infinity which maps the domain
Externí odkaz:
http://arxiv.org/abs/1904.07167
Autor:
Ivanshin, Pyotr N.
Here we construct the conformal mappings with the help of continuous fractions approximations. These approximations converge to the algebraic roots $\sqrt[N]{z}$ for $N \in \mathbb{N}$ and $z$ from the right half-plane of the complex plane. We estima
Externí odkaz:
http://arxiv.org/abs/1711.04409
The book presents methods of approximate solution of the basic problem of elasticity for special types of solids. Engineers can apply the approximate methods (Finite Element Method, Boundary Element Method) to solve the problems but the application o
Autor:
Ivanshin, Pyotr
In the article we generalise the quasisolution approach to the planar aerohydrodynamics problems to 3D case. We search for solution in the form of the linear spline.
Comment: 3 figures
Comment: 3 figures
Externí odkaz:
http://arxiv.org/abs/1312.4137
Autor:
Ivanshin, Pyotr, Shirokova, Elena
We present the spline-interpolation approximate solution of the Dirichlet problem for the Laplace equation in the bodies of revolution, cones and cylinders. Our method is based on reduction of the 3D problem to the sequence of 2D Dirichlet problems.
Externí odkaz:
http://arxiv.org/abs/1103.3830
Autor:
Ivanshin, Pyotr
In this article the author presents results on the selection for the space of convex hulls of $n$ points and compacts of the complete convex metric space of Busemann nonpositve curvature. Namely, we determine Lipschitz and H\"older properties of bary
Externí odkaz:
http://arxiv.org/abs/math/0702361
Autor:
Ivanshin, Pyotr N., Sosov, Evgenii N.
In this article the authors prove strong stability of the set of all Chebyshev centres of the bounded closed subset of the metric space. We endow the set of all compacts of the space $l^n_{\infty}$ with Hausdorff metric and prove that the map which p
Externí odkaz:
http://arxiv.org/abs/math/0609229
Autor:
Bikchentaev, Airat M.1 (AUTHOR), Ivanshin, Pyotr N.1 (AUTHOR) pivanshi@yandex.ru
Publikováno v:
International Journal of Theoretical Physics. Feb2021, Vol. 60 Issue 2, p534-545. 12p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.