Zobrazeno 1 - 10
of 19
pro vyhledávání: '"Ivanova, Raina"'
We show that if $\nabla R$ is a Jordan Szabo algebraic covariant derivative curvature tensor on a vector space of signature (p,q), where q is odd and p is less than q or if q is congruent to 2 mod 4 and if p is less than q-1, then $\nabla R=0$. This
Externí odkaz:
http://arxiv.org/abs/math/0211089
We study the higher order Jacobi operator in pseudo-Riemannian geometry. We exhibit a family of manifolds so that this operator has constant Jordan normal form on the Grassmannian of subspaces of signature (r,s) for certain values of (r,s). These pse
Externí odkaz:
http://arxiv.org/abs/math/0205269
Autor:
Gilkey, Peter, Ivanova, Raina
We construct almost complex algebraic curvature tensors for pseudo Hermitian inner products whose skew-symmetric curvature operator has constant Jordan normal form on the set of non-degenerate complex lines.
Externí odkaz:
http://arxiv.org/abs/math/0205081
We construct a family of pseudo-Riemannian manifolds so that the skew-symmetric curvature operator, the Jacobi operator, and the Szabo operator have constant eigenvalues on their domains of definition. This provides new and non-trivial examples of Os
Externí odkaz:
http://arxiv.org/abs/math/0205085
Autor:
Gilkey, Peter, Ivanova, Raina
Let M be a pseudo-Riemannian manifold with a pseudo-Hermitian complex structure $J$. We give necessary and sufficient conditions that the curvature operator $R(\pi)$ is complex linear when $\pi$ is a $J$ invariant real 2 plane. Under this assumption,
Externí odkaz:
http://arxiv.org/abs/math/0205078
Autor:
Gilkey, Peter, Ivanova, Raina
Publikováno v:
Comment. Math. Univ. Carolinae 43 (2002) 231-242
We construct new examples of algebraic curvature tensors so that the Jordan normal form of the higher order Jacobi operator is constant on the Grassmannian of subspaces of type $(r,s)$ in a vector space of signature $(p,q)$. We then use these example
Externí odkaz:
http://arxiv.org/abs/math/0205073
Autor:
Gilkey, Peter B., Ivanova, Raina
Let $R$ be an algebraic curvature tensor on a vector space of signature $(p,q)$ defining a spacelike Jordan Osserman Jacobi operator $\JJ_R$. We show that the eigenvalues of $\JJ_R$ are real and that $\JJ_R$ is diagonalizable if $p
Externí odkaz:
http://arxiv.org/abs/math/0205072
Autor:
Gilkey, Peter, Ivanova, Raina
Publikováno v:
Bulletin mathématique de la Société des Sciences Mathématiques de Roumanie, 2000 Jan 01. 43(3/4), 255-265.
Externí odkaz:
https://www.jstor.org/stable/43678666
Autor:
Ivanova, Raina1
Publikováno v:
Forum Nachhaltig Wirtschaften. 2022, Issue 1, p90-91. 2p.
Autor:
Gilkey, Peter, Ivanova, Raina
Publikováno v:
Global Differential Geometry: The Mathematical Legacy of Alfred Gray. :325-333
We construct almost complex algebraic curvature tensors for pseudo Hermitian inner products whose skew-symmetric curvature operator has constant Jordan normal form on the set of non-degenerate complex lines.