Zobrazeno 1 - 10
of 757
pro vyhledávání: '"Ivanov Alexey"'
Autor:
Ivanov, Alexey V.
We study a difference Riccati equation $\Phi(x) + \rho(x)/\Phi(x-\omega) = v(x)$ with $1-$periodic continuos coefficients. Using continued fraction theory we investigate a problem of existence of continuos solutions for this equation. It is shown tha
Externí odkaz:
http://arxiv.org/abs/2410.07730
We study a slow-fast system with two slow and one fast variables. We assume that the slow manifold of the system possesses a fold and there is an equilibrium of the system in a small neighbourhood of the fold. We derive a normal form for the system i
Externí odkaz:
http://arxiv.org/abs/2307.00953
Autor:
Nádasi, Hajnalka, Küster, Melvin, Mertelj, Alenka, Sebastián, Nerea, Boustjanuciuc, Patricija Hribar, Lisjak, Darja, Viereck, Thilo, Rosenberg, Margaret, Ivanov, Alexey O., Kantorovich, Sofia S., Eremin, Alexey, Ludwig, Frank
In complex colloidal systems, interparticle interactions strongly affect the dynamics of the constituting particles. A study of the dynamical response also provides invaluable information on the character of those interactions. Here we demonstrate ho
Externí odkaz:
http://arxiv.org/abs/2301.01652
Autor:
Ivanov, Alexey V.
We consider a skew product $F_{A} = (\sigma_{\omega}, A)$ over irrational rotation $\sigma_{\omega}(x) = x + \omega$ of a circle $\mathbb{T}^{1}$. It is supposed that the transformation $A: \mathbb{T}^{1} \to SL(2, \mathbb{R})$ being a $C^{1}$-map ha
Externí odkaz:
http://arxiv.org/abs/2204.05402
This paper introduces a run-and-tumble model with self-reinforcing directionality and rests. We derive a single governing hyperbolic partial differential equation for the probability density of random walk position, from which we obtain the second mo
Externí odkaz:
http://arxiv.org/abs/2110.04299
Autor:
Demonterova, Elena I., Tetenkin, Alexey V., Ivanov, Alexey V., Lebedev, Vladimir A., Shergin, Dmitrii L., Pashkova, Galina V.
Publikováno v:
In Archaeological Research in Asia June 2024 38