Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Ivan Limonchenko"'
Publikováno v:
Filomat. 34:2329-2356
In this paper we illustrate a tight interplay between homotopy theory and combinatorics within toric topology by explicitly calculating homotopy and combinatorial invariants of toric objects associated with the dodecahedron. In particular, we calcula
Autor:
Ivan Limonchenko
Publikováno v:
Trudy Matematicheskogo Instituta imeni V.A. Steklova. 305:174-196
Найдены условия на мультиградуированные числа Бетти симплициального комплекса $K$, гарантирующие существование высшего произведения М
Autor:
Ivan Limonchenko
Publikováno v:
Proceedings of the Steklov Institute of Mathematics. 305:161-181
We prove that certain conditions on multigraded Betti numbers of a simplicial complex K imply the existence of a higher Massey product in the cohomology of a moment-angle complex $${{\cal Z}_K}$$ , and this product contains a unique element (a strict
Publikováno v:
Известия Российской академии наук. Серия математическая. 83:3-62
В настоящей работе построена прямая последовательность $P^{0}\subset P^{1}\subset\cdots$ простых многогранников таких, что для всех $2\leq k\leq n$ в кольцах
Publikováno v:
Uspekhi Matematicheskikh Nauk. 74:95-166
В первой части обзора дано современное изложение структуры кольца специальных унитарных бордизмов, включающее как классические геомет
In this survey, we discuss two research areas related to Massey's higher operations. The first direction is connected with the cohomology of Lie algebras and the theory of representations. The second main theme is at the intersection of toric topolog
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::97d2548a18d1a655b2d45ec63c15e757
Publikováno v:
Proceedings of the Steklov Institute of Mathematics. 302:270-278
V. V. Batyrev constructed a family of Calabi–Yau hypersurfaces dual to the first Chern class in toric Fano varieties. Using this construction, we introduce a family of Calabi–Yau manifolds whose SU-bordism classes generate the special unitary bor
Autor:
Ivan Limonchenko
Publikováno v:
Chinese Annals of Mathematics, Series B. 38:1287-1302
The author constructs a family of manifolds, one for each n ≥ 2, having a nontrivial Massey n-product in their cohomology for any given n. These manifolds turn out to be smooth closed 2-connected manifolds with a compact torus Tm-action called mome
Autor:
Ivan Limonchenko
Publikováno v:
Matematicheskie Zametki. 94:373-388
Autor:
Ivan Limonchenko
Publikováno v:
Uspekhi Matematicheskikh Nauk. 71:207-208