Zobrazeno 1 - 4
of 4
pro vyhledávání: '"Ivan I. Kachuryk"'
Autor:
Valentyna A. Groza, Ivan I. Kachuryk
Publikováno v:
Symmetry, Integrability and Geometry: Methods and Applications, Vol 2, p 034 (2006)
The dual discrete $q$-ultraspherical polynomials $D_n^{(s)}(mu (x;s)|q)$ correspond to indeterminate moment problem and, therefore, have one-parameter family of extremal orthogonality relations. It is shown that special cases of dual discrete $q$-ult
Externí odkaz:
https://doaj.org/article/bebe2698b26145cea1b245c05578bc0f
Autor:
Ivan I. Kachuryk, A. U. Klimyk
Publikováno v:
Modern Physics Letters A. 23:943-952
We construct a new model of the quantum oscillator, which is related to the discrete q-Hermite polynomials of the second type. The position and momentum operators in the model are appropriate operators of the Fock representation of a deformation of t
Autor:
Anatoliy U. Klimyk, Ivan I. Kachuryk
Publikováno v:
Symmetry, Integrability and Geometry: Methods and Applications, Vol 3, p 055 (2007)
Physical systems with symmetries are described by functions containing kinematical and dynamical parts. We consider the case when kinematical symmetries are described by a noncompact semisimple real Lie group $G$. Then separation of kinematical parts
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d7be0322db1856178fd51202ab1d24c8
http://dspace.nbuv.gov.ua/handle/123456789/147805
http://dspace.nbuv.gov.ua/handle/123456789/147805
Autor:
Ivan I. Kachuryk, Valentyna A. Groza
Publikováno v:
Symmetry, Integrability and Geometry: Methods and Applications, Vol 2, p 034 (2006)
The dual discrete $q$-ultraspherical polynomials $D_n^{(s)}(\mu (x;s)|q)$ correspond to indeterminate moment problem and, therefore, have one-parameter family of extremal orthogonality relations. It is shown that special cases of dual discrete $q$-ul
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::beb073bb26327c9d5f9bcbf7710b0cdf