Zobrazeno 1 - 4
of 4
pro vyhledávání: '"Ivan D. Chipchakov"'
Autor:
Ivan D. Chipchakov
Publikováno v:
Journal of Number Theory. 235:484-501
Let $(K, v)$ be a Henselian discrete valued field with a quasifinite residue field. This paper proves the existence of an algebraic extension $E/K$ satisfying the following: (i) $E$ has dimension dim$(E) \le 1$, i.e. the Brauer group Br$(E ^{\prime }
Autor:
Ivan D. Chipchakov
Publikováno v:
Journal of Pure and Applied Algebra. 223:10-29
This paper determines the Brauer $p$-dimension Brd$_{p}(K)$ and the absolute Brauer $p$-dimension abrd$_{p}(K)$ of a Henselian valued field $(K, v)$, for a prime $p \neq {\rm char}(\widehat K)$, under restrictions on the residue field $\widehat K$, s
Autor:
Ivan D. Chipchakov
Let $(K, v)$ be a Henselian discrete valued field with residue field $\widehat K$ of characteristic $p$, and Brd$_{p}(K)$ be the Brauer $p$-dimension of $K$. This paper shows that Brd$_{p}(K) \ge n$, if $[\widehat K\colon \widehat K ^{p}] = p ^{n}$,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::89fd9c5ce53bf436ed85938c92461d7f
http://arxiv.org/abs/1611.03931
http://arxiv.org/abs/1611.03931
Autor:
Ivan D. Chipchakov
Publikováno v:
Proceeding of the Bulgarian Academy of Sciences. 66
Let E be a field, p a prime number and F/E a finitely-generated extension of transcendency degree t. This paper shows that if the absolute Galois group GE is of nonzero cohomological p-dimension cdp(E), then the field F has Brauer p-dimension Brdp(F)