Zobrazeno 1 - 10
of 23
pro vyhledávání: '"Ivan Balog"'
Publikováno v:
Physical Review E : Statistical, Nonlinear, and Soft Matter Physics
Physical Review E : Statistical, Nonlinear, and Soft Matter Physics, American Physical Society, 2020, 101 (6), pp.062146. ⟨10.1103/PhysRevE.101.062146⟩
Physical Review E : Statistical, Nonlinear, and Soft Matter Physics, American Physical Society, 2020, 101 (6), pp.062146. ⟨10.1103/PhysRevE.101.062146⟩
Field-theoretical calculations performed in an approximation scheme often present a spurious dependence of physical quantities on some unphysical parameters associated with the details of the calculation setup (such as, the renormalization scheme or,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::09ff3924244b701afef0d9a358c88d2a
Publikováno v:
Physical Review E : Statistical, Nonlinear, and Soft Matter Physics
Physical Review E : Statistical, Nonlinear, and Soft Matter Physics, American Physical Society, 2020, 101 (4), pp.042113. ⟨10.1103/PhysRevE.101.042113⟩
Physical Review E : Statistical, Nonlinear, and Soft Matter Physics, American Physical Society, 2020, 101 (4), pp.042113. ⟨10.1103/PhysRevE.101.042113⟩
We compute the critical exponents $\nu$, $\eta$ and $\omega$ of $O(N)$ models for various values of $N$ by implementing the derivative expansion of the nonperturbative renormalization group up to next-to-next-to-leading order [usually denoted $\mathc
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::68e5ed9be1dd40f73eefc1834c4e30ad
https://hal.archives-ouvertes.fr/hal-02475288
https://hal.archives-ouvertes.fr/hal-02475288
Publikováno v:
Phys.Rev.E
Phys.Rev.E, 2020, 102, pp.062154. ⟨10.1103/PhysRevE.102.062154⟩
Phys.Rev.E, 2020, 102, pp.062154. ⟨10.1103/PhysRevE.102.062154⟩
We provide a theoretical analysis by means of the nonperturbative functional renormalization group (NP-FRG) of the corrections to scaling in the critical behavior of the random-field Ising model (RFIM) near the dimension ${d}_{\mathrm{DR}}\ensuremath
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::89729f1d0bcecd6f97052dce215da1b4
https://hal.archives-ouvertes.fr/hal-02946245
https://hal.archives-ouvertes.fr/hal-02946245
Publikováno v:
Journal of Statistical Mechanics: Theory and Experiment
Journal of Statistical Mechanics: Theory and Experiment, IOP Publishing, 2019, 2019 (10), pp.103301. ⟨10.1088/1742-5468/ab3da5⟩
Journal of Statistical Mechanics: Theory and Experiment, IOP Publishing, 2019, 2019 (10), pp.103301. ⟨10.1088/1742-5468/ab3da5⟩
Criticality in the class of disordered systems comprising the random-field Ising model (RFIM) and elastic manifolds in a random environment is controlled by zero-temperature fixed points that must be treated through a functional renormalization group
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1b1be003afdc92a237791993f9834efb
https://hal.archives-ouvertes.fr/hal-02403866
https://hal.archives-ouvertes.fr/hal-02403866
Autor:
Adam Rançon, Ivan Balog
Publikováno v:
J.Stat.Mech.
J.Stat.Mech., 2019, 1903 (3), pp.033215. ⟨10.1088/1742-5468/ab0c12⟩
J.Stat.Mech., 2019, 1903 (3), pp.033215. ⟨10.1088/1742-5468/ab0c12⟩
The conditions for the existence of the effective action in statistical field theory, the Legendre transform of the cumulant generating function, in presence of non-linear local constraints are discussed. This problem is of importance for non-perturb
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b94bb5c1a7cb7d4a68e0b9f18a6a58f9
https://hal.archives-ouvertes.fr/hal-01965371
https://hal.archives-ouvertes.fr/hal-01965371
Publikováno v:
Phys.Rev.Lett.
Phys.Rev.Lett., 2019, 123 (24), pp.240604. ⟨10.1103/PhysRevLett.123.240604⟩
Phys.Rev.Lett., 2019, 123 (24), pp.240604. ⟨10.1103/PhysRevLett.123.240604⟩
We provide analytical arguments showing that the non-perturbative approximation scheme to Wilson's renormalisation group known as the derivative expansion has a finite radius of convergence. We also provide guidelines for choosing the regulator funct
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8555ca9fea81bf74c0c52b35259714db
https://hal.archives-ouvertes.fr/hal-02188862
https://hal.archives-ouvertes.fr/hal-02188862
Publikováno v:
Phys.Rev.B
Phys.Rev.B, 2018, 97 (9), pp.094204. ⟨10.1103/PhysRevB.97.094204⟩
Phys.Rev.B, 2018, 97 (9), pp.094204. 〈10.1103/PhysRevB.97.094204〉
Phys.Rev.B, 2018, 97 (9), pp.094204. ⟨10.1103/PhysRevB.97.094204⟩
Phys.Rev.B, 2018, 97 (9), pp.094204. 〈10.1103/PhysRevB.97.094204〉
We show that, contrary to previous suggestions based on computer simulations or erroneous theoretical treatments, the critical points of the random-field Ising model out of equilibrium, when quasi-statically changing the applied source at zero temper
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b3af680471f1286947f9927ee4c4981d
https://hal.archives-ouvertes.fr/hal-01758064
https://hal.archives-ouvertes.fr/hal-01758064
Publikováno v:
Phys.Rev.Lett.
Phys.Rev.Lett., 2018, 121 (16), pp.166402. ⟨10.1103/PhysRevLett.121.166402⟩
Phys.Rev.Lett., 2018, 121 (16), pp.166402. ⟨10.1103/PhysRevLett.121.166402⟩
In the presence of randomness, a relativistic semimetal undergoes a quantum transition towards a diffusive phase. A standard approach relates this transition to the $U(N)$ Gross-Neveu model in the limit of $N \to 0$. We show that the corresponding fi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6ed141c2fdae5d1cc6072fd5d04971a7
https://hal.archives-ouvertes.fr/hal-01903131
https://hal.archives-ouvertes.fr/hal-01903131
Autor:
Iván Balog
Publikováno v:
Egyháztörténeti Szemle, Vol 24, Iss 2 (2023)
Ebben a tanulmányban a következő kérdésekre keresek választ: 1. Hogyan nyerhetett a második világháború alatt a zsidótörvények idején a csepeli Weiss Manfréd Football Club (a továbbiakban: WMFC) egymás után kétszer (!), 1941-42-b
Externí odkaz:
https://doaj.org/article/fe94eea3a18b43b1b81136c43f723390
We present a numerical study of the many-body localization (MBL) phenomenon in the high-temperature limit within an anisotropic Heisenberg model with random local fields. Taking the dynamical spin conductivity $\sigma(\omega)$ as the test quantity, w
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::fe3139617613c53f3aec037b498f64af
http://arxiv.org/abs/1603.01526
http://arxiv.org/abs/1603.01526