Zobrazeno 1 - 10
of 25
pro vyhledávání: '"Itoh, Shigeharu"'
Autor:
Itoh, Shigeharu
Publikováno v:
弘前大学教育学部紀要. 127:67-75
The boundary layer equations for a plane unsteady flow are considered, for which the existence theorems with monotone initial data and with analytic initial data are obtained by Oleinik and Sammartino-Caflish, respectively. Here, without these assump
Autor:
Itoh, Shigeharu
Publikováno v:
弘前大学教育学部紀要. 125:49-55
It is shown here that the Cauchy problem for the Euler equations of a nonhomogeneous idealincompressible fluid has a unique solution for a small time interval. In comparison with the previous paper[1] and [2] in references, we discuss the problem und
Autor:
Itoh, Shigeharu, Itaya, Nobutoshi
Publikováno v:
弘前大学教育学部紀要. 122:59-65
In this paper, we have derived a priori estimates which are required to discuss the temporal behavior of the spatially spherosymmetric solution to the 3-dimensional ompressible Burgers equation.
Autor:
Itoh, Shigeharu
Publikováno v:
弘前大学教育学部紀要. (113):43-46
扇形領域におけるポアソン方程式に対するノイマン問題の連続な解の存在とその一意性に関する結果を報告する。
弘前大学教育学部紀要. 113, 2015, p.43-46
弘前大学教育学部紀要. 113, 2015, p.43-46
Autor:
Itoh, Shigeharu
Publikováno v:
弘前大学教育学部紀要. (110):17-21
扇形領域における熱伝導方程式に対する境界値問題の解の微分可能性に関する結果を報告する。
弘前大学教育学部紀要. 110, 2013, p.17-21
弘前大学教育学部紀要. 110, 2013, p.17-21
Publikováno v:
Hokkaido University Preprint Series in Mathematics. 643:1-23
Steady solution and asymptotic behaviour of corresponding nonsteady solution are studied for the Navier-Stokes equations under general Navier slip boundary condition. It is proved that the existence of a unique stationary solution and that this solut
Autor:
Itoh, Shigeharu
Publikováno v:
弘前大学教育学部紀要. (76):33-40
application/pdf
We investigate the Cauchy problem for Euler and Navier-Stokes equations of a nonhomogeneous incompressible fluid in IR3. The unique solvability on a small time interval independent of viscosity is proved, and moreover, it is show
We investigate the Cauchy problem for Euler and Navier-Stokes equations of a nonhomogeneous incompressible fluid in IR3. The unique solvability on a small time interval independent of viscosity is proved, and moreover, it is show
Autor:
Itoh, Shigeharu
Publikováno v:
弘前大学教育学部紀要. (70):33-39
application/pdf
It is shown here that the Cauchy problem for the Euler equations of a nonhomogeneous ideal incompressible fluid has a unique solution for a small time interval. The existence of a solution is established by applying the method of
It is shown here that the Cauchy problem for the Euler equations of a nonhomogeneous ideal incompressible fluid has a unique solution for a small time interval. The existence of a solution is established by applying the method of
Autor:
Itoh, Shigeharu
Publikováno v:
弘前大学教育学部紀要. (68):9-15
application/pdf
We give a sufficient condition on the uniqueness in the Cauchy problem for a system of nonlinear equations related to one dimensional motion of viscous isentropic gas.
弘前大学教育学部紀要. 68, 1992, p.9-15
We give a sufficient condition on the uniqueness in the Cauchy problem for a system of nonlinear equations related to one dimensional motion of viscous isentropic gas.
弘前大学教育学部紀要. 68, 1992, p.9-15
Autor:
Itoh, Shigeharu
application/pdf
We consider the unique solvability of the initial-boundary value problem to the Euler equations for a nonhomogeneous incompressible fluid in a bounded or unbounded domain in IR^3.
弘前大学教育学部紀要. 78, 1997, p.
We consider the unique solvability of the initial-boundary value problem to the Euler equations for a nonhomogeneous incompressible fluid in a bounded or unbounded domain in IR^3.
弘前大学教育学部紀要. 78, 1997, p.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=jairo_______::7d308c38769c453b78ed98b62a84ba4b
https://hirosaki.repo.nii.ac.jp/records/2151
https://hirosaki.repo.nii.ac.jp/records/2151