Zobrazeno 1 - 10
of 41
pro vyhledávání: '"Istrati, Nicolina"'
Autor:
Istrati, Nicolina
Compact Vaisman manifolds with vanishing first Chern class split into three categories, depending on the sign of the Bott-Chern class. We show that Vaisman manifolds with non-positive Bott-Chern class admit canonical metrics, are quasi-regular and ar
Externí odkaz:
http://arxiv.org/abs/2304.02582
Autor:
Istrati, Nicolina, Otiman, Alexandra
We give an explicit description of the Bott-Chern cohomology groups of a compact Vaisman manifold in terms of the basic cohomology. We infer that the Bott-Chern numbers and the Dolbeault numbers of a Vaisman manifold determine each other. On the othe
Externí odkaz:
http://arxiv.org/abs/2206.07312
Publikováno v:
Documenta Mathematica 27 (2022) 2301 - 2332
We study special triple covers $f\colon T \to S$ of algebraic surfaces, where the Tschirnhausen bundle $\mathcal E = \left(f_*\mathcal O_T/\mathcal O_S\right)^\vee$ is a quotient of a split rank three vector bundle, and we provide several necessary a
Externí odkaz:
http://arxiv.org/abs/2202.12523
Publikováno v:
Journal de l'Ecole polytechnique - Mathematiques, Volume 9 (2022), pp. 1347-1395
We introduce and study a special class of Kato manifolds, which we call toric Kato manifolds. Their construction stems from toric geometry, as their universal covers are open subsets of toric algebraic varieties of non-finite type. This generalizes p
Externí odkaz:
http://arxiv.org/abs/2010.14854
Autor:
Istrati, Nicolina
Dans cette thèse on s’intéresse à deux types de structures conformes non-dégénérées sur une variété complexe compacte donnée. La première c’est une forme holomorphe symplectique twistée (THS), i.e. une deux-forme holomorphe non-dégé
Externí odkaz:
http://www.theses.fr/2018USPCC054/document
Publikováno v:
J. Geom. Anal. 31 (2021) no. 3, 3230--3251
We study the Euler-Lagrange equation for several natural functionals defined on a conformal class of almost Hermitian metrics, whose expression involves the Lee form $\theta$ of the metric. We show that the Gauduchon metrics are the unique extremal m
Externí odkaz:
http://arxiv.org/abs/1907.11189
We revisit Brunella's proof of the fact that Kato surfaces admit locally conformally K\" ahler metrics, and we show that it holds for a large class of higher dimensional complex manifolds containing a global spherical shell. On the other hand, we con
Externí odkaz:
http://arxiv.org/abs/1905.03224
Autor:
Istrati, Nicolina
We show a bijective correspondence between compact toric locally conformally symplectic manifolds which admit a compatible complex structure and pairs $(C,a)$, where $C$ is a good cone in the dual Lie algebra of the torus and $a$ is a positive real n
Externí odkaz:
http://arxiv.org/abs/1902.02212
Autor:
Istrati, Nicolina
We investigate the relation between holomorphic torus actions on complex manifolds of LCK type and the existence of special LCK metrics. We show that if the group of biholomorphisms of such a manifold $(M,J)$ contains a non-real compact torus, then t
Externí odkaz:
http://arxiv.org/abs/1804.07473
Autor:
Istrati, Nicolina, Otiman, Alexandra
Oeljeklaus-Toma (OT) manifolds are complex non-K\"ahler manifolds whose construction arises from specific number fields. In this note, we compute their de Rham cohomology in terms of invariants associated to the background number field. This is done
Externí odkaz:
http://arxiv.org/abs/1711.07847