Zobrazeno 1 - 10
of 87
pro vyhledávání: '"Israwi, Samer"'
Autor:
Israwi, Samer, Kalisch, Henrik
Publikováno v:
Comptes Rendus. Mathématique, Vol 359, Iss 1, Pp 39-45 (2021)
Consideration is given to the KdV equation as an approximate model for long waves of small amplitude at the free surface of an inviscid fluid. It is shown that there is an approximate momentum density associated to the KdV equation, and the differenc
Externí odkaz:
https://doaj.org/article/92eb88123b26489d848c5c50512490f8
A generalized version of the $abcd$-Boussinesq class of systems is derived to accommodate variable bottom topography in two-dimensional space. This extension allows for the conservation of suitable energy functionals in some cases and enables the des
Externí odkaz:
http://arxiv.org/abs/2303.11556
This study deals with higher-ordered asymptotic equations for the water-waves problem. We considered the higher-order/extended Boussinesq equations over a flat bottom topography in the well-known long wave regime. Providing an existence and uniquenes
Externí odkaz:
http://arxiv.org/abs/2102.08045
The simulation of long, nonlinear dispersive waves in bounded domains usually requires the use of slip-wall boundary conditions. Boussinesq systems appearing in the literature are generally not well-posed when such boundary conditions are imposed, or
Externí odkaz:
http://arxiv.org/abs/2008.10754
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Israwi, Samer, Kalisch, Henrik
The Korteweg-de Vries equation is known to yield a valid description of surface waves for waves of small amplitude and large wavelength. The equation features a number of conserved integrals, but there is no consensus among scientists as to the physi
Externí odkaz:
http://arxiv.org/abs/1808.10662
Autor:
Israwi, Samer, Kalisch, Henrik
Consideration is given to the KdV equation as an approximate model for long waves of small amplitude at the free surface of an inviscid fluid. It is shown that there is an approximate momentum density associated to the KdV equation, and the differenc
Externí odkaz:
http://arxiv.org/abs/1808.06386
In this paper, a generalized nonlinear Camassa-Holm equation with time- and space-dependent coefficients is considered. We show that the control of the higher order dispersive term is possible by using an adequate weight function to define the energy
Externí odkaz:
http://arxiv.org/abs/1704.04921
Autor:
Duchêne, Vincent, Israwi, Samer
Publikováno v:
Ann. Math. Blaise Pascal, 25(1), pp. 21-74 (2018)
In this paper we address the Cauchy problem for two systems modeling the propagation of long gravity waves in a layer of homogeneous, incompressible and inviscid fluid delimited above by a free surface, and below by a non-necessarily flat rigid botto
Externí odkaz:
http://arxiv.org/abs/1611.04305
Autor:
Israwi, Samer
Nous nous étudions ici le problème d'Euler avec surface libre sur un fond non plat et dans un régime fortement non linéaire où l'hypothèse de faible amplitude de l'équation de KdV n'est pas vérifiée. On sait que, pour un tel régime, une gé
Externí odkaz:
http://www.theses.fr/2010BOR14009/document