Zobrazeno 1 - 10
of 75
pro vyhledávání: '"Isopi, M."'
Coarsening on a one-dimensional lattice is described by the voter model or equivalently by coalescing (or annihilating) random walks representing the evolving boundaries between regions of constant color and by backward (in time) coalescing random wa
Externí odkaz:
http://arxiv.org/abs/math/0404505
Publikováno v:
Annals of Probability 2004, Vol. 32, No. 4, 2857-2883
The Brownian web (BW) is the random network formally consisting of the paths of coalescing one-dimensional Brownian motions starting from every space-time point in R\timesR. We extend the earlier work of Arratia and of Toth and Werner by providing a
Externí odkaz:
http://arxiv.org/abs/math/0311254
Autor:
Gianfelice, M., Isopi, M.
Publikováno v:
Network and Heterogeneous Media, Vol.6, n.1, March 2011, pp.127-144
We analyse the lower non trivial part of the spectrum of the generator of the Glauber dynamics, which we consider a positive operator, for a d-dimensional nearest neighbour Ising model with a bounded random potential. We prove conjecture 1 in a paper
Externí odkaz:
http://arxiv.org/abs/math/0311108
Arratia, and later T\'oth and Werner, constructed random processes that formally correspond to coalescing one-dimensional Brownian motions starting from every space-time point. We extend their work by constructing and characterizing what we call the
Externí odkaz:
http://arxiv.org/abs/math/0203184
Publikováno v:
Phys. Rev. Lett. 87, (2001), 110201-1
We derive exact expressions for a number of aging functions that are scaling limits of non-equilibrium correlations, R(tw,tw+t) as tw --> infinity with t/tw --> theta, in the 1D homogenous q-state Potts model for all q with T=0 dynamics following a q
Externí odkaz:
http://arxiv.org/abs/cond-mat/0103494
Let $\tau = (\tau_i : i \in {\Bbb Z})$ denote i.i.d.~positive random variables with common distribution $F$ and (conditional on $\tau$) let $X = (X_t : t\geq0, X_0=0)$, be a continuous-time simple symmetric random walk on ${\Bbb Z}$ with inhomogeneou
Externí odkaz:
http://arxiv.org/abs/math/0009098
Publikováno v:
The Annals of Probability, 2004 Oct 01. 32(4), 2857-2883.
Externí odkaz:
https://www.jstor.org/stable/3481508
Publikováno v:
The Annals of Probability, 2002 Apr 01. 30(2), 579-604.
Externí odkaz:
https://www.jstor.org/stable/1558813
Publikováno v:
The Annals of Applied Probability, 1998 Aug 01. 8(3), 917-943.
Externí odkaz:
https://www.jstor.org/stable/2667213
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.