Zobrazeno 1 - 10
of 30
pro vyhledávání: '"Ismail Kombe"'
Autor:
Ismail Kombe
Publikováno v:
Abstract and Applied Analysis, Vol 2005, Iss 6, Pp 607-617 (2005)
We will investigate the nonexistence of positive solutions for the following nonlinear parabolic partial differential equation: ∂u/∂t=ℒu+V(w)up−1 in Ω×(0,T), 1
Externí odkaz:
https://doaj.org/article/ee4ac43205e74135b5acaf3c372abb71
Publikováno v:
Journal of Evolution Equations. 21:3675-3701
The main goal of this paper is twofold. The first one is to investigate the nonexistence of positive solutions for the following nonlinear parabolic partial differential equation on a noncompact Riemannian manifold M, $$\begin{aligned} {\left\{ \begi
Publikováno v:
Stochastic Processes and Functional Analysis. :55-70
We are primarily concerned with the absence of positive solutions of the following problem, \[ { ∂ u ∂ t = Δ ( u m ) + V ( x ) u m + λ u q a m p ; in Ω × ( 0 , T ) , u ( x , 0 ) = u 0 ( x ) ≥ 0 a m p ; in Ω , ∂ u ∂ ν = β ( x ) u a m
Autor:
Semra Ahmetolan, Ismail Kombe
Publikováno v:
Mathematical Inequalities & Applications. :885-896
In this work, we obtain several improved versions of two weight Hardy and Rellich type inequalities on the sub-Riemannian manifold R 2 n+ 1 defined by the vector fields ? ? X j = ? x j + 2ky j |z| 2 k? 2 ? ? l , Y j = ? y j ? 2kx j |z| 2 k? 2 ? ? l ,
Autor:
Ismail Kombe, Abdullah Yener
Publikováno v:
Complex Variables and Elliptic Equations. 63:420-436
In this paper, we derive a sufficient condition on a pair of nonnegative weight functions ? and w in ?m+k so that the general weighted Hardy type inequality with a remainder term (Formula Presented) is the sub-elliptic gradient. It is worth emphasizi
Autor:
Abdullah Yener, Ismail Kombe
In this paper we exhibit some sufficient conditions that imply general weighted \begin{document}$L^{p}$\end{document} Rellich type inequality related to Greiner operator without assuming a priori symmetric hypotheses on the weights. More precisely, w
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7ba0aafbcbbcfb1945e59134225e326b
http://hdl.handle.net/11467/3765
http://hdl.handle.net/11467/3765
Autor:
Semra Ahmetolan, Ismail Kombe
Publikováno v:
Mathematical Inequalities & Applications. :937-948
In the present paper we prove several sharp two-weight Hardy, Hardy-Poinca?e, and Rellich type inequalities on the sub-Riemannian manifold R2n+1 = Rn x Rn xR defined by the vector fields: Xj = ? /? xj +2kyj |z|2k?2 ?/ ? l Yj = ? /? yj ?2kxj |z|2k?2?/
Autor:
Abdullah Yener, Ismail Kombe
Publikováno v:
Mathematische Nachrichten. 289:994-1004
In this paper we present new results on two-weight Hardy, Hardy–Poincare and Rellich type inequalities with remainder terms on a complete noncompact Riemannian Manifold M. The method we use is flexible enough to obtain more weighted Hardy type ineq
We give a simple sufficient criterion on a pair of nonnegative weight functions a and b on a Carnot group $$\mathbb {G},$$ so that the following general weighted $$L^{p}$$ Rellich type inequality $$\begin{aligned} \int _{\mathbb {G}}a\left| \Delta _{
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::23a2a927717601ac604b0771cd74fd3f
http://hdl.handle.net/11467/3517
http://hdl.handle.net/11467/3517
We find a simple sufficient criterion on a pair of nonnegative weight functions \begin{document}$V(x)$\end{document} and \begin{document}$W(x) $\end{document} on a Carnot group \begin{document}$\mathbb{G},$\end{document} so that the general weighted
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::efcf57b4fa412ab75f5821a6d0c02097
http://hdl.handle.net/11467/3681
http://hdl.handle.net/11467/3681