Zobrazeno 1 - 10
of 66
pro vyhledávání: '"Ismail, M. A. H."'
Autor:
Alhaidari, A. D., Ismail, M. E. H.
Publikováno v:
J. Math. Phys. 64, 112102 (2023)
We use the tridiagonal representation approach to solve the radial Schr\"odinger equation for the continuum scattering states of the Kratzer potential. We do the same for a radial power-law potential with inverse-square and inverse-cube singularities
Externí odkaz:
http://arxiv.org/abs/2209.03738
Publikováno v:
Neural Computing & Applications; Oct2024, Vol. 36 Issue 30, p18705-18725, 21p
Autor:
Alhaidari, A. D., Ismail, M. E. H.
Publikováno v:
Journal of Mathematical Physics 56, 072107 (2015)
In the standard formulation of quantum mechanics, one starts by proposing a potential function that models the physical system. The potential is then inserted into the Schr\"odinger equation, which is solved for the wave function, bound states energy
Externí odkaz:
http://arxiv.org/abs/1408.4003
Publikováno v:
J. Phys. A 45, 365204 (2012)
We obtain a symmetric tridiagonal matrix representation of the Dirac-Coulomb operator in a suitable complete square integrable basis. Orthogonal polynomials techniques along with Darboux method are used to obtain the bound states energy spectrum, the
Externí odkaz:
http://arxiv.org/abs/1204.6493
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
In this article we have discovered a close relationship between the (algebraic) Bethe Ansatz equations of the spin $s$ XXZ model of a finite size and the $q$-Sturm-Liouville problem. We have demonstrated that solutions of the Bethe Ansatz equations g
Externí odkaz:
http://arxiv.org/abs/math-ph/0407033
We show how polynomial mappings of degree k from a union of disjoint intervals onto [-1,1] generate a countable number of special cases of a certain generalization of the Chebyshev Polynomials. We also derive a new expression for these generalized Ch
Externí odkaz:
http://arxiv.org/abs/math/0401382
Publikováno v:
Symbolic Computation, Number Theory, Special Functions, Physics and Combinatorics; Developments in Mathematics, vol 4, Eds. F.G. Garvan and M.E.H. Ismail (Kluwer, 2001)
Theory of Random Matrix Ensembles have proven to be a useful tool in the study of the statistical distribution of energy or transmission levels of a wide variety of physical systems. We give an overview of certain q-generalizations of the Random Matr
Externí odkaz:
http://arxiv.org/abs/cond-mat/0112386
Autor:
Ismail, M. E. H., Stanton, D.
Publikováno v:
Transactions of the American Mathematical Society, 2003 Oct 01. 355(10), 4061-4091.
Externí odkaz:
https://www.jstor.org/stable/1194748
Autor:
Muttalib, K. A., Ismail, M. E. H.
A wide variety of complex physical systems described by unitary matrices have been shown numerically to satisfy level statistics predicted by Dyson's circular ensemble. We argue that the impact of localization in such systems is to provide certain re
Externí odkaz:
http://arxiv.org/abs/cond-mat/9510005